762 research outputs found
Morphology of Salina offshore (Southern Tyrrhenian Sea)
In this paper, we present the first complete morphological map of the Salina offshore at a scale
of 1:100,000. The submarine flanks of the Salina edifice extend down to −650 to −1300 m, are
steep and characterized by an uneven morphology due to the presence of volcanic and erosivedepositional
features. The volcanic features cover ∼30% of the submarine portion and include
volcanic cones and bedrock outcrops. The remaining ∼70% is affected by a wide series of
erosive-depositional features. Among these, features related to Late Quaternary sea level
fluctuations comprise the insular shelf surrounding the island and overlying submarine
terraced depositional sequences. Mass-wasting features include landslide scars, channels, fanshaped
deposits and waveforms. The presented map provides useful insights for a better
understanding of the morphological evolution of the edific
The first ultra-high resolution Digital Terrain Model of the shallow-water sector around Lipari Island (Aeolian Islands, Italy)
Very high resolution bathymetric map obtained through multibeam echosounders
data are crucial to generate accurate Digital Terrain Models
from which the morphological setting of active volcanic areas can be analyzed
in detail. Here we show and discuss the main results from the first
multibeam bathymetric survey performed in shallow-waters around the island
of Lipari, the largest and the most densely populated of the Aeolian
Islands (southern Italy). Data have been collected in the depth range of
0.1-150 m and complete the already existent high-resolution multibeam
bathymetry realized between 100 and 1300 m water depth. The new ultrahigh
resolution bathymetric maps at 0.1-0.5 m provide new insights on the
shallow seafloor of Lipari, allowing to detail a large spectrum of volcanic,
erosive-depositional and anthropic features. Moreover, the presented data
allow outlining the recent morphological evolution of the shallow coastal
sector of this active volcanic island, indicating the presence of potential
geo-hazard factors in shallow waters
Submarine depositional terraces at Salina Island (Southern Tyrrhenian Sea) and implications on the Late-Quaternary evolution of the insular shelf
The integrated analysis of high-resolution multibeam bathymetry and single-channel seismic profiles around Salina Island allowed us to characterize the stratigraphic architecture of the insular shelf. The shelf is formed by a gently-sloping erosive surface carved on the volcanic bedrock, mostly covered by sediments organized in a suite of terraced bodies, i.e. submarine depositional terraces. Based on their position on the shelf, depth range of their edge and inner geometry, different orders of terraces can be distinguished. The shallowest terrace (near-shore terrace) is a sedimentary prograding wedge, whose formation can be associated to the downward transport of sediments from the surf zone and shoreface during stormy conditions. According to the range depth of the terrace edge (i.e., 10–25 m, compatible with the estimated present-day, local storm-wave base level in the central and western Mediterranean), the formation of this wedge can be attributed to the present-day highstand. By assuming a similar genesis for the deeper terraces, mid-shelf terraces having the edge at depths of 40–50 m and 70–80 m can be attributed to the late and early stages of the Post-LGM transgression, respectively. Finally, the deepest terrace (shelf-edge terrace) has the edge at depths of 130–160 m, being thus referable to the lowstand occurred at ca. 20 ka. Based on the variability of edge depth in the different sectors, we also show how lowstand terraces can be used to provide insights on the recent vertical movements that affected Salina edifice in the last 20 ka, highlighting more generally their possible use for neo-tectonic studies elsewhere. Moreover, being these terraces associated to different paleo-sea levels, they can be used to constrain the relative age of the different erosive stages affecting shallow-water sectors
The role of Internal Solitary Waves on deep-water sedimentary processes. The case of up-slope migrating sediment waves off the Messina Strait
Subaqueous, asymmetric sand waves are typically observed in marine channel/canyon systems, tidal
environments, and continental slopes exposed to strong currents, where they are formed by current
shear resulting from a dominant unidirectional flow. However, sand-wave fields may be readily
observed in marine environments where no such current exists; the physical processes driving their
formation are enigmatic or not well understood. We propose that internal solitary waves (ISWs) induced
by tides can produce an effective, unidirectional boundary “current” that forms asymmetric sand waves.
We test this idea by examining a sand-wave field off the Messina Strait, where we hypothesize that
ISWs formed at the interface between intermediate and surface waters are refracted by topography.
Hence, we argue that the deflected pattern (i.e., the depth-dependent orientation) of the sand-wave
field is due to refraction of such ISWs. Combining field observations and numerical modelling, we
show that ISWs can account for three key features: ISWs produce fluid velocities capable of mobilizing
bottom sediments; the predicted refraction pattern resulting from the interaction of ISWs with bottom
topography matches the observed deflection of the sand waves; and predicted migration rates of sand
waves match empirical estimates. This work shows how ISWs may contribute to sculpting the structure
of continental margins and it represents a promising link between the geological and oceanographic
communities
Benthic foraminifers and siliceous sponge spicules assemblages in the Quaternary rhodolith rich sediments from Pontine Archipelago shelf
The bottom samples (Quaternary in age) of two cores (CS1 and Caro1) collected at 60 and 122 m water depth in the marine area near Ponza Island (Pontine Archipelago, Tyrrhenian Sea) are investigated. In particular, benthic foraminifers and siliceous sponge spicules are considered. The coralline red algae (pralines, boxworks and unattached branches) are abundant in both samples and, particularly, in the CS1 bottom as well as the benthic foraminifers. The siliceous sponge spicules also are very diversified and abundant in the CS1 bottom sample, while in the Caro1 bottom they are rare and fragmented. Benthic foraminiferal assemblage of two samples is dominated by Asterigerinata mamilla and Lobatula lobatula, typical epiphytic species but also able to live on circalittoral detrital seafloors, adapting to an epifaunal lifestyle. Based on these data the bottom of the studied cores represents the upper circalittoral zone, within the present-day depth limit distribution of coralline red algae in the Pontine Archipelago (shallower than 100 m water depth)
Morphology of Lipari offshore (Southern Tyrrhenian Sea)
High-resolution multibeam bathymetry was recently collected around Lipari, the largest and
most densely populated island of the Aeolian Archipelago (Southern Tyrrhenian Sea). The
data were acquired within the context of marine geological studies performed in the area
over the last 10 years. We present the first detailed morphological map of the Lipari
offshore at 1:100,000 scale (Main Map). A rugged morphology characterizes the submarine
portions of Lipari volcano, reflecting both volcanic and erosive-depositional processes. The
volcanic features include cones, lava flows and bedrock outcrops. Erosive-depositional
features include an insular shelf topped by submarine depositional terraces related to LateQuaternary
sea-level fluctuations, as well as landslide scars, channelized features, fanshaped
deposits and wavy bedforms. The different distribution of volcanic and erosivedepositional
features on the various sectors of Lipari is mainly related to the older age of the
western flank with respect to the eastern one. The map also provides insights for a first
marine geohazard assessment of this active volcanic area
Do third-year mental health nursing students feel prepared to assess physical health?
Background The life expectancy for people with mental health issues is significantly lower than
the general population, however, their physical health needs are often unrecognised by health
professionals.
Aim To investigate whether third-year mental health nursing students are clinically prepared to
undertake a pre-defined set of physical health checks.
Method A 34-item questionnaire was completed by two cohorts of mental health nursing students
in their third and final year. Participants self-reported on their competence to assess a range of
physical health checks. 37 questionnaires were completed and analysed.
Findings Three groups emerged: group 1 – 100% of students self-declared competence in
assessments including temperature and pulse, group 2 – more than 50% of students self-declared
competence in assessments including urinalysis and pulse oximetry, and group 3 – less than 50%
of students self-declared competence in taking electrocardiograms and using the hydration
assessment tool.
Conclusion The student participants of this study were not adequately prepared to undertake a
complete range of physical health assessments for people with mental health issues
The limits of seaward spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data
Highlights:
- Analysis of a combined new high-resolution 2D seismic and bathymetric data set offshore Mt Etna
- Extensional domains are mapped at the shallow subsurface of the continental margin
- Compressional structures are mapped at the toe of the continental margin
- A coupled volcano edifice / continental margin instability is proposed
Mount Etna is the largest active volcano in Europe. Instability of its eastern flank is well documented onshore, and continuously monitored by geodetic and InSAR measurements. Little is known, however, about the offshore extension of the eastern volcano flank, defining a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired a new high-resolution 2D reflection seismic dataset. The data provide new insights into the heterogeneous geology and tectonics at the continental margin offshore Mt Etna. The submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. A compressional regime is found at the toe of the continental margin, which is bound to a complex basin system. Both, the clear link between on- and offshore tectonic structures as well as the compressional regime at the easternmost flank edge, indicate a continental margin gravitational collapse as well as spreading to be present at Mt Etna. Moreover, we find evidence for the offshore southern boundary of the moving flank, which is identified as a right lateral oblique fault north of Catania Canyon. Our findings suggest a coupled volcano edifice / continental margin instability at Mt Etna, demonstrating first order linkage between on- and offshore tectonic processes
Anatomy and origin of authochthonous late Pleistocene forced regression deposits, east Coromandel inner shelf, New Zealand: implications for the development and definition of the regressive systems tract
High-resolution seismic reflection data from the east Coromandel coast, New Zealand, provide details of the sequence stratigraphy beneath an autochthonous, wave dominated inner shelf margin during the late Quaternary (0-140 ka). Since c. 1 Ma, the shelf has experienced limited subsidence and fluvial sediment input, producing a depositional regime characterised by extensive reworking of coastal and shelf sediments during glacio-eustatic sea-level fluctuations. It appears that only one complete fifth-order (c. 100 000 yr) depositional sequence is preserved beneath the inner shelf, the late Pleistocene Waihi Sequence, suggesting any earlier Quaternary sequences were mainly cannibalised into successively younger sequences. The predominantly Holocene-age Whangamata Sequence is also evident in seismic data and modern coastal deposits, and represents an incomplete depositional sequence in its early stages of formation. A prominent aspect of the sequence stratigraphy off parts of the east Coromandel coast is the presence of forced regressive deposits (FRDs) within the regressive systems tract (RST) of the late Pleistocene Waihi Sequence. The FRDs are interpreted to represent regressive barrier-shoreface sands that were sourced from erosion and onshore reworking of underlying Pleistocene sediments during the period of slow falling sea level from isotope stages 5 to 2 (c. 112-18 ka). The RST is volumetrically the most significant depositional component of the Waihi Sequence; the regressive deposits form a 15-20 m thick, sharp-based, tabular seismic unit that downsteps and progrades continuously across the inner shelf. The sequence boundary for the Waihi Sequence is placed at the most prominent, regionally correlative, and chronostratigraphically significant surface, namely an erosional unconformity characterised in many areas by large incised valleys that was generated above the RST. This unconformity is interpreted as a surface of maximum subaerial erosion generated during the last glacial lowstand (c. 18 ka). Although the base of the RST is associated with a prominent regressive surface of erosion, this is not used as the sequence boundary as it is highly diachronous and difficult to identify and correlate where FRDs are not developed. The previous highstand deposits are limited to subaerial barrier deposits preserved behind several modern Holocene barriers along the coast, while the transgressive systems tract is preserved locally as incised-valley fill deposits beneath the regressive surface of erosion at the base of the RST. Many documented late Pleistocene RSTs have been actively sourced from fluvial systems feeding the shelf and building basinward-thickening, often stacked wedges of FRDs, for which the name allochthonous FRDs is suggested. The Waihi Sequence RST is unusual in that it appears to have been sourced predominantly from reworking of underlying shelf sediments, and thus represents an autochthonous FRD. Autochthonous FRDs are also present on the Forster-Tuncurry shelf in southeast Australia, and may be a common feature in other shelf settings with low subsidence and low sediment supply rates, provided shelf gradients are not too steep, and an underlying source of unconsolidated shelf sediments is available to source FRDs. The preservation potential of such autochthonous FRDs in ancient deposits is probably low given that they are likely to be cannibalised during subsequent sea-level falls
Imaging continental shelf shallow stratigraphy by using different high-resolution seismic sources: an example from the Calabro-Tyrrhenian margin (Mediterranean Sea)
High-resolution seismic reflection profiles of the Calabro-Tyrrhenian continental shelf were collected using different seismic sources (Sub-Bottom Profiler, Uniboom, Sparker 0.5-1-4.5 kJ). Noticeable differences and results were obtained both from a geophysical and geological-interpretative point of view. The availability of different sources permitted the definition of the most suitable seismostratigraphic characterization in terms of resolution, penetration and acoustic facies. Very high resolution stratigraphy was defined through profiles produced by different seismic systems used in parallel. This permitted the application of sequence-stratigraphy concepts with the reconstruction of a thick postglacial depositional sequence, formed by a transgressive and a high-stand systems tract. The thickness distribution of postglacial deposits reveals that the main depocenter (55-65 m) is located offshore of the Coastal Range, along a stretch of coast supplied by several small and seasonal streams ("fiumare") and characterized by the lack of a coastal plain. This suggests the greater efficiency of sediment supply and bypass in this area relatively to sectors located offshore of the main rivers. The transgressive systems tract, usually thin or nearly absent, is particularly well developed (up to 33 m) and is composed of up to three parasequences with a retrogradational stacking pattern. The high-stand systems tract, up to 30 m thick, is made up of two parasequences and has a quite regular geometry and acoustic facies
- …
