272 research outputs found
Coordinated field study for CaPE: Analysis of energy and water budgets
The objectives of this hydrologic cycle study are to understand and model (1) surface energy and land-atmosphere water transfer processes, and (2) interactions between convective storms and surface energy fluxes. A surface energy budget measurement campaign was carried out by an interdisciplinary science team during the period July 8 - August 19, 1991 as part of the Convection and Precipitation/Electrification Experiment (CaPE) in the vicinity of Cape Canaveral, FL. Among the research themes associated with CaPE is the remote estimation of rainfall. Thus, in addition to surface radiation and energy budget measurements, surface mesonet, special radiosonde, precipitation, high-resolution satellite (SPOT) data, geosynchronous (GOES) and polar orbiting (DMSP SSM/I, OLS; NOAA AVHRR) satellite data, and high altitude airplane data (AMPR, MAMS, HIS) were collected. Initial quality control of the seven surface flux station data sets has begun. Ancillary data sets are being collected and assembled for analysis. Browsing of GOES and radar data has begun to classify days as disturbed/undisturbed to identify the larger scale forcing of the pre-convective environment, convection storms and precipitation. The science analysis plan has been finalized and tasks assigned to various investigators
COTS MEMS Flow-Measurement Probes
As an alternative to conventional tubing instrumentation for measuring airflow, designers and technicians at Glenn Research Center have been fabricating packaging components and assembling a set of unique probes that contain commercial off-the-shelf (COTS) microelectromechanical systems (MEMS) sensor chips. MEMS sensor chips offer some compelling advantages over standard macroscopic measurement devices. MEMS sensor technology has matured through mass production and use in the automotive and aircraft industries. At present, MEMS are the devices of choice for sensors in such applications as tire-pressure monitors, altimeters, pneumatic controls, cable leak detectors, and consumer appliances. Compactness, minimality of power demand, rugged construction, and moderate cost all contribute to making MEMS sensors attractive for instrumentation for future research. Conventional macroscopic flow-measurement instrumentation includes tubes buried beneath the aerodynamic surfaces of wind-tunnel models or in wind-tunnel walls. Pressure is introduced at the opening of each such tube. The pressure must then travel along the tube before reaching a transducer that generates an electronic signal. The lengths of such tubes typically range from 20 ft (approx.= 6 m) to hundreds of feet (of the order of 100 m). The propagation of pressure signals in the tubes damps the signals considerably and makes it necessary to delay measurements until after test rigs have reached steady-state operation. In contrast, a MEMS pressure sensor that generates electronic output can take readings continuously under dynamic conditions in nearly real time. In order to use stainless-steel tubing for pressure measurements, it is necessary to clean many tubes, cut them to length, carefully install them, delicately deburr them, and splice them. A cluster of a few hundred 1/16-in.- (approx.=1.6-mm-) diameter tubes (such clusters are common in research testing facilities) can be several inches (of the order of 10 cm) in diameter and could weigh enough that two technicians are needed to handle it. Replacing hard tubing with electronic chips can eliminate much of the bulk. Each sensor would fit on the tip of a 1/16-in. tube with room to spare. The Lucas NovaSensor P592 piezoresistive silicon pressure sensor was chosen for this project because of its cost, availability, and tolerance to extreme ambient conditions. The sensor chip is 1 mm square by 0.6 mm thick (about 0.039 by 0.039 by 0.024 in.) and includes 0.12-mm (approx.=0.005-in.) wire connection tabs. The figure shows a flow-angularity probe that was built by use of three such MEMS chips. It is planned to demonstrate this MEMS probe as an alternative to a standard tube-type "Cobra" probe now used routinely in wind tunnels and aeronautical hardware. This MEMS probe could be translated across a flow field by use of a suitable actuator, so that its accuracy and the shortness of its response time could be exploited to obtain precise dynamic measurements of a sort that cannot be made by use of conventional tubing-based instrumentation
High performance astronomical data communications in the LSST data management system
The Large Synoptic Survey Telescope (LSST) is an 8.4m (6.5m effective), wide-field (9.6 degree2), ground-based telescope with a 3.2 GPixel camera. It will survey over 20,000 degree2 with 1,000 re-visits over 10 years in six visible bands, and is scheduled to begin full scientific operations in 2016. The Data Management System will acquire and process the images, issue transient alerts, and catalog the world's largest database of optical astronomical data. Every 24 hours, 15 terabytes of raw data will be transferred via redundant 10 Gbps fiber optics down from the mountain summit at Cerro Pachon, Chile to the Base Facility in La Serena for transient alert processing. Simultaneously, the data will be transferred at 2.5Gbps over fiber optics to the Archive Center in Champaign, Illinois for archiving and further scientific processing and creation of scientific data catalogs. Finally, the Archive Center will distribute the processed data and catalogs at 10Gbps to a number Data Access Centers for scientific ,educational, and public access. Redundant storage and network bandwidth is built into the design of the system. The current networking acquistiion strategy involves leveraging existing dark fiber to handle within Chile, Chile - U.S. and within U.S. links. There are a significant number of carriers and networks involved and coordinating the acquisition, deployment, and operations of this capability. Advanced protocols are being investigated during our Research and Development phase to address anticipated challenges in effective utilization. We describe the data communications requirements, architecture, and acquisition strategy in this paper
You Have A Wonderful Way : Of Doing What You Do
https://digitalcommons.library.umaine.edu/mmb-vp/2796/thumbnail.jp
Recommended from our members
The genetic landscape of high-risk neuroblastoma
Neuroblastoma is a malignancy of the developing sympathetic nervous system that often presents with widespread metastatic disease, resulting in survival rates of less than 50%1. To determine the spectrum of somatic mutation in high-risk neuroblastoma, we studied 240 cases using a combination of whole exome, genome and transcriptome sequencing as part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. Here we report a low median exonic mutation frequency of 0.60 per megabase (0.48 non-silent), and remarkably few recurrently mutated genes in these tumors. Genes with significant somatic mutation frequencies included ALK (9.2% of cases), PTPN11 (2.9%), ATRX (2.5%, an additional 7.1% had focal deletions), MYCN (1.7%, a recurrent p.Pro44Leu alteration), and NRAS (0.83%). Rare, potentially pathogenic germline variants were significantly enriched in ALK, CHEK2, PINK1, and BARD1. The relative paucity of recurrent somatic mutations in neuroblastoma challenges current therapeutic strategies reliant upon frequently altered oncogenic drivers
The state of the Martian climate
60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes
Decline of christianity in the U.S. Has Slowed, May Have Leveled Off: Findings from the 2023-24 Religious Landscape Study
The 2023-24 Religious Landscape Study (RLS) and other Pew Research Center polling find that the Christian share of the population, after years of decline, has been relatively stable since 2019. And the religiously unaffiliated population, after rising rapidly for decades, has leveled off – at least temporarily. At present:62% of U.S. adults describe themselves as Christians: 40% are Protestant, 19% are Catholic, and 3% are other Christians.29% are religiously unaffiliated: 5% are atheist, 6% are agnostic, and 19% identify religiously as "nothing in particular."7% belong to religions other than Christianity: 2% are Jewish, and 1% each are Muslim, Buddhist or Hindu (all figures are rounded)
High performance astronomical data communications in the LSST data management system
The Large Synoptic Survey Telescope (LSST) is an 8.4m (6.5m effective), wide-field (9.6 degree2), ground-based telescope with a 3.2 GPixel camera. It will survey over 20,000 degree2 with 1,000 re-visits over 10 years in six visible bands, and is scheduled to begin full scientific operations in 2016. The Data Management System will acquire and process the images, issue transient alerts, and catalog the world's largest database of optical astronomical data. Every 24 hours, 15 terabytes of raw data will be transferred via redundant 10 Gbps fiber optics down from the mountain summit at Cerro Pachon, Chile to the Base Facility in La Serena for transient alert processing. Simultaneously, the data will be transferred at 2.5Gbps over fiber optics to the Archive Center in Champaign, Illinois for archiving and further scientific processing and creation of scientific data catalogs. Finally, the Archive Center will distribute the processed data and catalogs at 10Gbps to a number Data Access Centers for scientific ,educational, and public access. Redundant storage and network bandwidth is built into the design of the system. The current networking acquistiion strategy involves leveraging existing dark fiber to handle within Chile, Chile - U.S. and within U.S. links. There are a significant number of carriers and networks involved and coordinating the acquisition, deployment, and operations of this capability. Advanced protocols are being investigated during our Research and Development phase to address anticipated challenges in effective utilization. We describe the data communications requirements, architecture, and acquisition strategy in this paper
Le Forum, Vol. 43 #4
https://digitalcommons.library.umaine.edu/francoamericain_forum/1102/thumbnail.jp
Community partnerships are fundamental to ethical ancient DNA research
The ethics of the scientific study of Ancestors has long been debated by archaeologists, bioanthropologists, and, more recently, ancient DNA (aDNA) researchers. This article responds to the article “Ethics of DNA research on human remains: five globally applicable guidelines” published in 2021 in Nature by a large group of aDNA researchers and collaborators. We argue that these guidelines do not sufficiently consider the interests of community stakeholders, including descendant communities and communities with potential, but yet unestablished, ties to Ancestors. We focus on three main areas of concern with the guidelines. First is the false separation of “scientific” and “community” concerns and the consistent privileging of researcher perspectives over those of community members. Second, the commitment of the guidelines’ authors to open data ignores the principles and practice of Indigenous Data Sovereignty. Further, the authors argue that involving community members in decisions about publication and data sharing is unethical. We argue that excluding community perspectives on “ethical” grounds is convenient for researchers, but it is not, in fact, ethical. Third, we stress the risks of not consulting communities that have established or potential ties to Ancestors, using two recent examples from the literature. Ancient DNA researchers cannot focus on the lowest common denominator of research practice, the bare minimum that is legally necessary. Instead, they should be leading multidisciplinary efforts to create processes to ensure communities from all regions of the globe are identified and engaged in research that affects them. This will often present challenges, but we see these challenges as part of the research, rather than a distraction from the scientific endeavor. If a research team does not have the capacity to meaningfully engage communities, questions must be asked about the value and benefit of their research
- …
