696 research outputs found

    Association of urinary uromodulin with kidney function decline and mortality: the health ABC study
.

    Get PDF
    BackgroundUrine uromodulin (uUMOD) is a protein secreted by the kidney tubule. Recent studies have suggested that higher uUMOD may be associated with improved kidney and mortality outcomes.MethodsUsing a case-cohort design, we evaluated the association between baseline uUMOD levels and ≥ 30% estimated glomerular filtration rate (eGFR) decline, incident chronic kidney disease (CKD), rapid kidney function decline, and mortality using standard and modified Cox proportional hazards regression.ResultsThe median value of uUMOD was 25.8 µg/mL, mean age of participants was 74 years, 48% were women, and 39% were black. Persons with higher uUMOD had lower prevalence of diabetes and coronary artery disease (CAD), and had lower systolic blood pressure. Persons with higher uUMOD also had higher eGFR, lower urinary albumin to creatinine ratio (ACR), and lower C-reactive protein (CRP). There was no association of uUMOD with > 30% eGFR decline. In comparison to those in the lowest quartile of uUMOD, those in the highest quartile had a significantly (53%) lower risk of incident CKD (CI 73%, 18%) and a 51% lower risk of rapid kidney function decline (CI 76%, 1%) after multivariable adjustment. Higher uUMOD was associated with lower risk of mortality in demographic adjusted models, but not after multivariable adjustment.ConclusionHigher levels of uUMOD are associated with lower risk of incident CKD and rapid kidney function decline. Additional studies are needed in the general population and in persons with advanced CKD to confirm these findings.


    Outcomes after angiography with sodium bicarbonate and acetylcysteine

    Get PDF
    Background: Intravenous sodium bicarbonate and oral acetylcysteine are widely used to prevent acute kidney injury and associated adverse outcomes after angiography without definitive evidence of their efficacy. Methods: Using a 2-by-2 factorial design, we randomly assigned 5177 patients at high risk for renal complications who were scheduled for angiography to receive intravenous 1.26% sodium bicarbonate or intravenous 0.9% sodium chloride and 5 days of oral acetylcysteine or oral placebo; of these patients, 4993 were included in the modified intention-to-treat analysis. The primary end point was a composite of death, the need for dialysis, or a persistent increase of at least 50% from baseline in the serum creatinine level at 90 days. Contrast-associated acute kidney injury was a secondary end point. Results: The sponsor stopped the trial after a prespecified interim analysis. There was no interaction between sodium bicarbonate and acetylcysteine with respect to the primary end point (P=0.33). The primary end point occurred in 110 of 2511 patients (4.4%) in the sodium bicarbonate group as compared with 116 of 2482 (4.7%) in the sodium chloride group (odds ratio, 0.93; 95% confidence interval [CI], 0.72 to 1.22; P=0.62) and in 114 of 2495 patients (4.6%) in the acetylcysteine group as compared with 112 of 2498 (4.5%) in the placebo group (odds ratio, 1.02; 95% CI, 0.78 to 1.33; P=0.88). There were no significant between-group differences in the rates of contrast-associated acute kidney injury. Conclusions: Among patients at high risk for renal complications who were undergoing angiography, there was no benefit of intravenous sodium bicarbonate over intravenous sodium chloride or of oral acetylcysteine over placebo for the prevention of death, need for dialysis, or persistent decline in kidney function at 90 days or for the prevention of contrast-associated acute kidney injury. (Funded by the U.S. Department of Veterans Affairs Office of Research and Development and the National Health and Medical Research Council of Australia; PRESERVE ClinicalTrials.gov number, NCT01467466.

    A Prospective study on central venous catheter related blood stream infections in surgical patients

    Get PDF
    Introduction:Vascular catheter related infections are the leading cause of nosocomial blood stream infections and associated with significant mortality and morbidity. This study is carried out to know the central venous related blood stream infections in surgical patients. Materials & Methods: The present study was carried out in the Department of Surgery, Sir Sayajirao General Hospital and Medical College, Baroda. It was a prospective study of total of 72 patients who had undergone Central Venous Catheterisation. The study was carried out from October 2017 to November 2018.Results:Most of the patients were in the age group of 30-50 years and males outnumbered females in all age group. There was no statistically significant difference between emergency and elective procedure of the CVC insertion. Number of attempts in CVC insertion was found to be statistically significant with. Tip colonization (p value - 0.0465) and BSI (p value-0.031). Number of lumens in CVC was found to be statistically significant with regards to tip colonization (p value-0.0449) and BSI (p value-0.0243). Highest mortality occurred within 1-10 days of hospital stay. There has been statistically significant difference between the number of days of CVC in situ and catheter colonization and BSI.Conclusion: we can conclude that our findings helps to implement Educational, training of health care workers, and adherence to standardized protocols for insertion and maintenance of CRBSI catheters significantly reduced the incidence of catheter-related infections and represent the most important preventive measures

    Urine neutrophil gelatinase-associated lipocalin is an early marker of acute kidney injury in critically ill children: a prospective cohort study

    Get PDF
    INTRODUCTION: Serum creatinine is a late marker of acute kidney injury (AKI). Urine neutrophil gelatinase-associated lipocalin (uNGAL) is an early marker of AKI, where the timing of kidney injury is known. It is unknown whether uNGAL predicts AKI in the general critical care setting. We assessed the ability of uNGAL to predict AKI development and severity in critically ill children. METHODS: This was a prospective cohort study of critically ill children. Children aged between 1 month and 21 years who were mechanically ventilated and had a bladder catheter inserted were eligible. Patients with end-stage renal disease or who had just undergone kidney transplantation were excluded. Patients were enrolled within 24 to 48 hours of initiation of mechanical ventilation. Clinical data and serum creatinine were collected daily for up to 14 days from enrollment, and urine was collected once daily for up to 4 days for uNGAL measurement. AKI was graded using pRIFLE (pediatric modified Risk, Injury, Failure, Loss, End Stage Kidney Disease) criteria. Day 0 was defined as the day on which the AKI initially occurred, and pRIFLEmax was defined as the worst pRIFLE AKI grade recorded during the study period. The χ(2 )test was used to compare associations between categorical variables. Mann-Whitney and Kruskal-Wallis tests were used to compare continuous variables between groups. Diagnostic characteristics were evaluated by calculating sensitivity and specificity, and constructing receiver operating characteristic curves. RESULTS: A total of 140 patients (54% boys, mean ± standard deviation Pediatric Risk of Mortality II score 15.0 ± 8.0, 23% sepsis) were included. Mean and peak uNGAL concentrations increased with worsening pRIFLEmax status (P < 0.05). uNGAL concentrations rose (at least sixfold higher than in controls) in AKI, 2 days before and after a 50% or greater rise in serum creatinine, without change in control uNGAL. The parameter uNGAL was a good diagnostic marker for AKI development (area under the receiver operating characteristic curve [AUC] 0.78, 95% confidence interval [CI] 0.62 to 0.95) and persistent AKI for 48 hours or longer (AUC 0.79, 95% CI 0.61 to 0.98), but not for AKI severity, when it was recorded after a rise in serum creatinine had occurred (AUC 0.63, 95% CI 0.44 to 0.82). CONCLUSION: We found uNGAL to be a useful early AKI marker that predicted development of severe AKI in a heterogeneous group of patients with unknown timing of kidney injury

    Developing Biomarker Combinations in Multicenter Studies via Direct Maximization and Penalization

    Get PDF
    When biomarker studies involve patients at multiple centers and the goal is to develop biomarker combinations for diagnosis, prognosis, or screening, we consider evaluating the predictive capacity of a given combination with the center-adjusted AUC (aAUC), a summary of conditional performance. Rather than using a general method to construct the biomarker combination, such as logistic regression, we propose estimating the combination by directly maximizing the aAUC. Furthermore, it may be desirable to have a biomarker combination with similar predictive capacity across centers. To that end, we allow for penalization of the variability in center-specific performance. We demonstrate good asymptotic properties of the resulting combinations. Simulations provide small-sample evidence that maximizing the aAUC can lead to combinations with greater predictive capacity than combinations constructed via logistic regression. We further illustrate the utility of constructing combinations by maximizing the aAUC while penalizing variability. We apply these methods to data from a study of acute kidney injury after cardiac surgery
    corecore