528 research outputs found

    Jailbreaking Proprietary Large Language Models using Word Substitution Cipher

    Full text link
    Large Language Models (LLMs) are aligned to moral and ethical guidelines but remain susceptible to creative prompts called Jailbreak that can bypass the alignment process. However, most jailbreaking prompts contain harmful questions in the natural language (mainly English), which can be detected by the LLM themselves. In this paper, we present jailbreaking prompts encoded using cryptographic techniques. We first present a pilot study on the state-of-the-art LLM, GPT-4, in decoding several safe sentences that have been encrypted using various cryptographic techniques and find that a straightforward word substitution cipher can be decoded most effectively. Motivated by this result, we use this encoding technique for writing jailbreaking prompts. We present a mapping of unsafe words with safe words and ask the unsafe question using these mapped words. Experimental results show an attack success rate (up to 59.42%) of our proposed jailbreaking approach on state-of-the-art proprietary models including ChatGPT, GPT-4, and Gemini-Pro. Additionally, we discuss the over-defensiveness of these models. We believe that our work will encourage further research in making these LLMs more robust while maintaining their decoding capabilities.Comment: 15 page

    Using death to one's advantage: HIV modulation of apoptosis

    Get PDF
    Infection by human immunodeficiency virus (HIV) is associated with an early immune dysfunction and progressive destruction of CD4+ T lymphocytes. This progressive disappearance of T cells leads to a lack of immune control of HIV replication and to the development of immune deficiency resulting in the increased occurrence of opportunistic infections associated with acquired immune deficiency syndrome (AIDS). The HIV-induced, premature destruction of lymphocytes is associated with the continuous production of HIV viral proteins that modulate apoptotic pathways. The viral proteins, such as Tat, Env, and Nef, are associated with chronic immune activation and the continuous induction of apoptotic factors. Viral protein expression predisposes lymphocytes, particularly CD4+ T cells, CD8+ T cells, and antigen-presenting cells, to evolve into effectors of apoptosis and as a result, to lead to the destruction of healthy, non-infected T cells. Tat and Nef, along with Vpu, can also protect HIV-infected cells from apoptosis by increasing anti-apoptotic proteins and down- regulating cell surface receptors recognized by immune system cells. This review will discuss the validity of the apoptosis hypothesis in HIV disease and the potential mechanism(s) that HIV proteins perform in the progressive T cell depletion observed in AIDS pathogenesis. Originally published Leukemia, Vol. 15, No. 3, Mar 200

    Teaching vaccine development in schools: Learnings from a survey and curriculum design for a course

    Get PDF
    Although vaccines are being developed and administered to people for more than a century, the understanding of the steps involved in vaccine development is a relatively new subject to the general public. During the current pandemic, there has been an explosion of non-validated news about COVID-19 and vaccines. To enhance the understanding of this critical societal science, there is an urgent need to teach these topics in the early education systems. Defining the essential subjects and courses for high school and developing syllabi for undergraduate courses in immunology and vaccinology can be difficult, as students choose diverse career options after their studies. To define these curricula, understanding the current level of awareness regarding vaccinology and immunology among students becomes essential. Thus, we have undertaken an exploratory survey of 650 high school and undergraduate college students in India on their awareness of the processes of vaccine development. Our results confirmed our hypothesis that there is a very limited understanding of this topic among school-going students. In this article, we propose an outline for a course for teaching in high schools. We recommend that this course should be interdisciplinary and a mix and match of majors and minors. It should train students with soft skills and prepare them for their careers in biomedical research

    Lysophosphatidylcholine as an adjuvant for lentiviral vector mediated gene transfer to airway epithelium: effect of acyl chain length

    Get PDF
    Extent: 11p.Background Poor gene transfer efficiency has been a major problem in developing an effective gene therapy for cystic fibrosis (CF) airway disease. Lysophosphatidylcholine (LPC), a natural airway surfactant, can enhance viral gene transfer in animal models. We examined the electrophysiological and physical effect of airway pre-treatment with variants of LPC on lentiviral (LV) vector gene transfer efficiency in murine nasal airways in vivo. Methods Gene transfer was assessed after 1 week following nasal instillations of a VSV-G pseudotype LV vector pre-treated with a low and high dose of LPC variants. The electrophysiological effects of a range of LPC variants were assessed by nasal transepithelial potential difference measurements (TPD) to determine tight junction permeability. Any physical changes to the epithelium from administration of the LPC variants were noted by histological methods in airway tissue harvested after 1 hour. Results Gene transduction was significantly greater compared to control (PBS) for our standard LPC (palmitoyl/stearoyl mixture) treatment and for the majority of the other LPC variants with longer acyl chain lengths. The LPC variant heptadecanoyl also produced significantly greater LV gene transfer compared to our standard LPC mixture. LV gene transfer and the transepithelial depolarization produced by the 0.1% LPC variants at 1 hour were strongly correlated (r2 = 0.94), but at the 1% concentration the correlation was less strong (r2 = 0.59). LPC variants that displayed minor to moderate levels of disruption to the airway epithelium were clearly associated with higher LV gene transfer. Conclusions These findings show the LPC variants effect on airway barrier function and their correlation to the effectiveness of gene expression. The enhanced expression produced by a number of LPC variants should provide new options for preclinical development of efficient airway gene transfer techniques.Patricia Cmielewski, Don S. Anson and David W. Parson

    Adeno-associated virus serotype 2 induces cell-mediated immune responses directed against multiple epitopes of the capsid protein VP1

    Get PDF
    Adeno-associated virus serotype 2 (AAV-2) has been developed as a gene therapy vector. Antibody and cell-mediated immune responses to AAV-2 or AAV-2-transfected cells may confound the therapeutic use of such vectors in clinical practice. In one of the most detailed examinations of AAV-2 immunity in humans to date, cell-mediated and humoral immune responses to AAV-2 were characterized from a panel of healthy blood donors. The extent of AAV-2-specific antibody in humans was determined by examination of circulating AAV-2-specific total IgG levels in plasma from 45 normal donors. Forty-one donors were seropositive and responses were dominated by IgG1 and IgG2 subclasses. Conversely, AAV-2-specific IgG3 levels were consistently low in all donors. Cell-mediated immune recall responses were detectable in nearly half the population studied. In vitro restimulation with AAV-2 of peripheral blood mononuclear cell cultures from 16 donors elicited gamma interferon (IFN-γ) (ten donors), interleukin-10 (IL-10) (eight donors) and interleukin-13 (IL-13) (four donors) responses. Using a series of overlapping peptides derived from the sequence of the VP1 viral capsid protein, a total of 59 candidate T-cell epitopes were identified. Human leukocyte antigen characterization of donors revealed that the population studied included diverse haplotypes, but that at least 17 epitopes were recognized by multiple donors and could be regarded as immunodominant. These data indicate that robust immunological memory to AAV-2 is established. The diversity of sequences recognized suggests that attempts to modify the AAV-2 capsid, as a strategy to avoid confounding immunity, will not be feasible

    Assessment of immunogenicity of romiplostim in clinical studies with ITP subjects

    Get PDF
    Romiplostim is an Fc-peptide fusion protein that activates intracellular transcriptional pathways via the thrombopoietin (TPO) receptor leading to increased platelet production. Romiplostim has been engineered to have no amino acid sequence homology to endogenous TPO. Recombinant protein therapeutics can be at a risk of development of an antibody response that can impact efficacy and safety. Hence, a strategy to detect potential antibody formation to the drug and to related endogenous molecules can be useful. The immunogenicity assessment strategy involved both the detection and characterization of binding and neutralizing antibodies. The method for detection was based on a surface plasmon resonance biosensor platform using the Biacore 3000. Samples that tested positive for binding antibodies in the Biacore immunoassay were then tested in a neutralization assay. Serum samples from 225 subjects with immune thrombocytopenic purpura (ITP) dosed with romiplostim and 45 ITP subjects dosed with placebo were tested for romiplostim and TPO antibodies. Prior to romiplostim treatment, 17 subjects (7%) tested romiplostim antibody positive and 12 subjects (5%) tested TPO antibody positive for pre-existing binding antibodies. After romiplostim exposure, 11% of the subjects exhibited binding antibodies against romiplostim and 5% of the subjects with ITP showed binding antibodies against TPO. The antibodies against romiplostim did not cross-react with TPO and vice versa. No cases of anti-TPO neutralizing antibodies were detected in romiplostim-treated subjects. The incidence of anti-romiplostim neutralizing antibodies to romiplostim was 0.4% (one subject); this subject tested negative at the time of follow-up 4 months later. No impact on platelet profiles were apparent in subjects that had antibodies to romiplostim to date. In summary, administration of romiplostim in ITP subjects resulted in the development of a binding antibody response against romiplostim and TPO ligand. One subject developed a neutralizing antibody response to romiplostim that impacted the platelet counts of this subject. No neutralizing antibodies to endogenous TPO were observed

    Apoptosis Control in Syncytia Induced by the HIV Type 1–Envelope Glycoprotein Complex: Role of Mitochondria and Caspases

    Get PDF
    Syncytia arising from the fusion of cells expressing a lymphotropic HIV type 1–encoded envelope glycoprotein complex (Env) with cells expressing the CD4/CXC chemokine receptor 4 complex spontaneously undergo cell death. Here we show that this process is accompanied by caspase activation and signs of mitochondrial membrane permeabilization (MMP), including the release of intermembrane proteins such as cytochrome c (Cyt-c) and apoptosis-inducing factor (AIF) from mitochondria. In Env-induced syncytia, caspase inhibition did not suppress AIF- and Cyt-c translocation, yet it prevented all signs of nuclear apoptosis. Translocation of Bax to mitochondria led to MMP, which was inhibited by microinjected Bcl-2 protein or bcl-2 transfection. Bcl-2 also prevented the subsequent nuclear chromatin condensation and DNA fragmentation. The release of AIF occurred before that of Cyt-c and before caspase activation. Microinjection of AIF into syncytia sufficed to trigger rapid, caspase-independent Cyt-c release. Neutralization of endogenous AIF by injection of an antibody prevented all signs of spontaneous apoptosis occurring in syncytia, including the Cyt-c release and nuclear apoptosis. In contrast, Cyt-c neutralization only prevented nuclear apoptosis, and did not affect AIF release. Our results establish that the following molecular sequence governs apoptosis of Env-induced syncytia: Bax-mediated/Bcl-2–inhibited MMP → AIF release → Cyt-c release → caspase activation → nuclear apoptosis
    corecore