11,850 research outputs found

    Use of derived forcing functions at Centaur main engine cutoff in predicting transient loads on Mariner Mars 1971 and Viking spacecraft

    Get PDF
    Mathematical models for prediction of acceleration responses and reaction forces and moments at base of Mariner Mars 71 and Viking spacecraft from Centaur main engine cutof

    A geometric basis for the standard-model gauge group

    Get PDF
    A geometric approach to the standard model in terms of the Clifford algebra Cl_7 is advanced. A key feature of the model is its use of an algebraic spinor for one generation of leptons and quarks. Spinor transformations separate into left-sided ("exterior") and right-sided ("interior") types. By definition, Poincare transformations are exterior ones. We consider all rotations in the seven-dimensional space that (1) conserve the spacetime components of the particle and antiparticle currents and (2) do not couple the right-chiral neutrino. These rotations comprise additional exterior transformations that commute with the Poincare group and form the group SU(2)_L, interior ones that constitute SU(3)_C, and a unique group of coupled double-sided rotations with U(1)_Y symmetry. The spinor mediates a physical coupling of Poincare and isotopic symmetries within the restrictions of the Coleman--Mandula theorem. The four extra spacelike dimensions in the model form a basis for the Higgs isodoublet field, whose symmetry requires the chirality of SU(2). The charge assignments of both the fundamental fermions and the Higgs boson are produced exactly.Comment: 17 pages, LaTeX requires iopart. Accepted for publication in J. Phys. A: Math. Gen. 9 Mar 2001. Typos correcte

    Alcohol Fuel Cells at Optimal Temperatures

    Get PDF
    High-power-density alcohol fuel cells can relieve many of the daunting challenges facing a hydrogen energy economy. Here, such fuel cells are achieved using CsH2PO4 as the electrolyte and integrating into the anode chamber a Cu-ZnO/Al2O3 methanol steam-reforming catalyst. The temperature of operation, ~250°C, is matched both to the optimal value for fuel cell power output and for reforming. Peak power densities using methanol and ethanol were 226 and 100 mW/cm^2, respectively. The high power output (305 mW/cm^2) obtained from reformate fuel containing 1% CO demonstrates the potential of this approach with optimized reforming catalysts and also the tolerance to CO poisoning at these elevated temperatures

    Polymer solid acid composite membranes for fuel-cell applications

    Get PDF
    A systematic study of the conductivity of polyvinylidene fluoride (PVDF) and CsHSO4 composites, containing 0 to 100% CsHSO4, has been carried out. The polymer, with its good mechanical properties, served as a supporting matrix for the high proton conductivity inorganic phase. The conductivity of composites exhibited a sharp increase with temperature at 142°C, characteristic of the superprotonic phase transition of CsHSO4. At high temperature (160°C), the dependence of conductivity on vol % CsHSO4 was monotonic and revealed a percolation threshold of ~10 vol %. At low temperature (100°C), a maximum in the conductivity at ~80 vol % CsHSO4 was observed. Results of preliminary fuel cell measurements are presented

    Constraining the metallicities, ages, star formation histories, and ionizing continua of extragalactic massive star populations

    Full text link
    We infer the properties of massive star populations using the far-ultraviolet stellar continua of 61 star-forming galaxies: 42 at low-z observed with HST and 19 at z~2 from the Megasaura sample. We fit each stellar continuum with a linear combination of up to 50 single age and single metallicity Starburst99 models. From these fits, we derive light-weighted ages and metallicities, which agree with stellar wind and photospheric spectral features, and infer the spectral shapes and strengths of the ionizing continua. Inferred light-weighted stellar metallicities span 0.05-1.5 Z_\odot and are similar to the measured nebular metallicities. We quantify the ionizing continua using the ratio of the ionizing flux at 900\AA\ to the non-ionizing flux at 1500\AA\ and demonstrate the evolution of this ratio with stellar age and metallicity using theoretical single burst models. These single burst models only match the inferred ionizing continua of half of the sample, while the other half are described by a mixture of stellar ages. Mixed age populations produce stronger and harder ionizing spectra than continuous star formation histories, but, contrary to previous studies that assume constant star formation, have similar stellar and nebular metallicities. Stellar population age and metallicity affect the far-UV continua in different and distinguishable ways; assuming a constant star formation history diminishes the diagnostic power. Finally, we provide simple prescriptions to determine the ionizing photon production efficiency (ξion\xi_{ion}) from the stellar population properties. ξion\xi_{ion} has a range of log(ξion)=24.425.7\xi_{ion})=24.4-25.7 Hz erg1^{-1} that depends on stellar age, metallicity, star formation history, and contributions from binary star evolution. These stellar population properties must be observationally determined to determine the number of ionizing photons generated by massive stars.Comment: 31 pages, 23 figures, resubmitted to ApJ after incorporating the referee's comments. Comments encourage

    Superprotonic phase transition of CsHSO4: A molecular dynamics simulation study

    Get PDF
    The superprotonic phase transition (phase II --> phase I; 414 K) of cesium hydrogen sulfate, CsHSO4, was simulated using molecular dynamics with the "first principles" MSXX force field (FF). The structure, binding energy, and vibrational frequencies of the CsHSO4 monomer, the binding energy of the (H2SO4)2 dimer, and the torsion barrier of the HSO4- ion were determined from quantum mechanical calculations, and the parameters of the Dreiding FF for Cs, S, O, and H adjusted to reproduce these quantities. Each hydrogen atom was treated as bonded exclusively to a single oxygen atom (proton donor), but allowed to form hydrogen bonds to various second nearest oxygen atoms (proton acceptors). Fixed temperature-pressure (NPT) dynamics were employed to study the structure as a function of temperature from 298 to 723 K. In addition, the influence of several force field parameters, including the hydrogen torsional barrier height, hydrogen bond strength, and oxygen charge distribution, on the structural behavior of CsHSO4 was probed. Although the FF does not allow proton migration (i.e., proton jumps) between oxygen atoms, a clear phase transition occurred as demonstrated by a discrete change of unit cell symmetry (monoclinic to tetragonal), cell volume, and molar enthalpy. The dynamics of the HSO4- group reorientational motion also changed dramatically at the transition. The observation of a transition to the expected tetragonal phase using a FF in which protons cannot migrate indicates that proton diffusion does not drive the transition to the superprotonic phase. Rather, high conductivity is a consequence of the rapid reorientations that occur in the high temperature phase. Furthermore, because no input from the superprotonic phase was employed in these simulations, it may be possible to employ MD to hypothesize superprotonic materials

    The critical current of YBa2Cu3O7-d Low Angle Grain Boundaries

    Get PDF
    Transport critical current measurements have been performed on 5 degree [001]-tilt thin film YBa2Cu3O7-delta single grain boundaries with magnetic field rotated in the plane of the film, phi. The variation of the critical current has been determined as a function of the angle between the magnetic field and the grain boundary plane. In applied fields above 1 T the critical current, j_c, is found to be strongly suppressed only when the magnetic field is within an angle phi_k of the grain boundary. Outside this angular range the behavior of the artificial grain boundary is dominated by the critical current of the grains. We show that the phi dependence of j_c in the suppressed region is well described by a flux cutting model.Comment: To be published in PRL, new version with minor changes following referees report
    corecore