1,067 research outputs found

    Measurements of differential cross sections of Higgs boson production through gluon fusion in the H? WW*? e?µ? final state at √s=13 TeV with the ATLAS detector

    Get PDF
    Higgs boson production via gluon–gluon fusion is measured in the WW? e?µ? decay channel. The dataset utilized corresponds to an integrated luminosity of 139 fb collected by the ATLAS detector from s=13 TeV proton–proton collisions delivered by the Large Hadron Collider between 2015 and 2018. Differential cross sections are measured in a fiducial phase space restricted to the production of at most one additional jet. The results are consistent with Standard Model expectations, derived using different Monte Carlo generators

    Measurement of off-shell Higgs boson production in the H ∗ → Z Z → 4 l decay channel using a neural simulation-based inference technique in 13 TeV pp collisions with the ATLAS detector

    Get PDF

    Search for a resonance decaying into a scalar particle and a Higgs boson in final states with leptons and two photons in proton-proton collisions at s = 13 TeV with the ATLAS detector

    Get PDF
    A search for a hypothetical heavy scalar particle, X, decaying into a singlet scalar particle, S, and a Standard Model Higgs boson, H, using 140 fb−1 of proton-proton collision data at the centre-of-mass energy of 13 TeV recorded with the ATLAS detector at the LHC is presented. The explored mass range is 300 ≤ mX ≤ 1000 GeV and 170 ≤ mS ≤ 500 GeV. The signature of this search is one or two leptons (e or μ) from the decay of vector bosons originating from the S particle, S → W±W∓/ZZ, and two photons from the Higgs boson decay, H → γγ. No significant excess is observed above the expected Standard Model background. The observed (expected) upper limits at the 95% confidence level on the cross- section for gg → X → SH, assuming the same S → WW/ZZ branching ratios as for a SM-like heavy Higgs boson, are between 530 (800) fb and 120 (170) fb

    Measurement of jet track functions in pp collisions at s=13 TeV with the ATLAS detector

    Get PDF
    Measurements of jet substructure are key to probing the energy frontier at colliders, and many of them use track-based observables which take advantage of the angular precision of tracking detectors. Theoretical calculations of track-based observables require ‘track functions’, which characterize the transverse momentum fraction rq carried by charged hadrons from a fragmenting quark or gluon. This letter presents a direct measurement of rq distributions in dijet events from the 140 fb−1 of proton–proton collisions at s=13 TeV recorded with the ATLAS detector. The data are corrected for detector effects using machine-learning methods. The scale evolution of the moments of the rq distribution is sensitive to non-linear renormalization group evolution equations of QCD, and is compared with analytic predictions. When incorporated into future theoretical calculations, these results will enable a precision program of theory-data comparison for track-based jet substructure observables

    Search for Higgs boson decays into a Z boson and a light hadronically decaying resonance in pp collisions at s=13 TeV with the ATLAS detector

    Get PDF
    A search for decays of the Higgs boson into a Z boson and a light resonance, with a mass of 0.5–3.5 GeV, is performed using the full 140 fb−1 dataset of 13 TeV proton–proton collisions recorded by the ATLAS detector during LHC Run 2. Leptonic decays of the Z boson and hadronic decays of the light resonance are considered. The resonance can be interpreted as a J/ψ or ηc meson, an axion-like particle, or a light pseudoscalar predicted in two-Higgs-doublet models. Due to its low mass, this resonance is produced with a high Lorentz boost in the laboratory frame and therefore reconstructed as a single small-radius jet of hadrons. A neural network is used to correct the Monte Carlo simulation of the total expected background using data from sideband regions. Two additional neural networks are used to distinguish signal from background, enhancing the purity of the signal region. A binned profile-likelihood fit is performed on the final-state invariant mass distribution. No significant excess of events relative to the expected background is observed, and upper limits at 95% confidence level are set on the Higgs boson's branching fraction to a Z boson and a light resonance. The exclusion limit is ∼10% for the lower masses, and increases for higher masses. Upper limits on the effective coupling CZHeff/Λ of an axion-like particle to a Higgs boson and Z boson are also set at 95% confidence level, and range from 0.9 to 2 TeV−1

    An implementation of neural simulation-based inference for parameter estimation in ATLAS

    Get PDF
    Neural simulation-based inference (NSBI) is a powerful class of machine-learning-based methods for statistical inference that naturally handles high-dimensional parameter estimation without the need to bin data into low-dimensional summary histograms. Such methods are promising for a range of measurements, including at the Large Hadron Collider, where no single observable may be optimal to scan over the entire theoretical phase space under consideration, or where binning data into histograms could result in a loss of sensitivity. This work develops a NSBI framework for statistical inference, using neural networks to estimate probability density ratios, which enables the application to a full-scale analysis. It incorporates a large number of systematic uncertainties, quantifies the uncertainty due to the finite number of events in training samples, develops a method to construct confidence intervals, and demonstrates a series of intermediate diagnostic checks that can be performed to validate the robustness of the method. As an example, the power and feasibility of the method are assessed on simulated data for a simplified version of an off-shell Higgs boson couplings measurement in the four-lepton final states. This approach represents an extension to the standard statistical methodology used by the experiments at the Large Hadron Collider, and can benefit many physics analyses

    Observation of VVZ production at s=13 TeV with the ATLAS detector

    Get PDF
    A search for the production of three massive vector bosons, VVZ(V=W,Z), in proton–proton collisions at s=13 TeV is performed using data with an integrated luminosity of 140 fb−1 recorded by the ATLAS detector at the Large Hadron Collider. Events produced in the leptonic final states WWZ→lνlνll (l=e,μ), WZZ→lνllll, ZZZ→llllll, and the semileptonic final states WWZ→qqlνll and WZZ→lνqqll, are analysed. The measured cross section for the pp→VVZ process is 660−90+93(stat.)−81+88(syst.) fb, and the observed (expected) significance is 6.4 (4.7) standard deviations, representing the observation of VVZ production. In addition, the measured cross section for the pp→WWZ process is 442±94(stat.)−52+60(syst.) fb, and the observed (expected) significance is 4.4 (3.6) standard deviations, representing evidence of WWZ production. The measured cross sections are consistent with the Standard Model predictions. Constraints on physics beyond the Standard Model are also derived in the effective field theory framework by setting limits on Wilson coefficients for dimension-8 operators describing anomalous quartic gauge boson couplings

    Combination of searches for heavy spin-1 resonances using 139 fb−1 of proton-proton collision data at s = 13 TeV with the ATLAS detector

    Get PDF
    A combination of searches for new heavy spin-1 resonances decaying into different pairings of W, Z, or Higgs bosons, as well as directly into leptons or quarks, is presented. The data sample used corresponds to 139 fb−1 of proton-proton collisions at = 13 TeV collected during 2015–2018 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting quark pairs (qq, bb, , and tb) or third-generation leptons (τν and ττ) are included in this kind of combination for the first time. A simplified model predicting a spin-1 heavy vector-boson triplet is used. Cross-section limits are set at the 95% confidence level and are compared with predictions for the benchmark model. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The complementarity of the various analyses increases the sensitivity to new physics, and the resulting constraints are stronger than those from any individual analysis considered. The data exclude a heavy vector-boson triplet with mass below 5.8 TeV in a weakly coupled scenario, below 4.4 TeV in a strongly coupled scenario, and up to 1.5 TeV in the case of production via vector-boson fusion

    Azimuthal Angle Correlations of Muons Produced via Heavy-Flavor Decays in 5.02 TeV Pb + Pb and pp Collisions with the ATLAS Detector

    Get PDF
    corecore