2,169 research outputs found

    Evaluation of planar silicon pixel sensors with the RD53A readout chip for the Phase-2 Upgrade of the CMS Inner Tracker

    Get PDF
    Shared via Kudos: https://www.growkudos.com/publications/10.1088%25252F1748-0221%25252F18%25252F11%25252Fp11015The Large Hadron Collider at CERN will undergo an upgrade in order to increase its luminosity to 7.5 × 10^34 cm^-2s^-1. The increased luminosity during this High-Luminosity running phase, starting around 2029, means a higher rate of proton-proton interactions, hence a larger ionizing dose and particle fluence for the detectors. The current tracking system of the CMS experiment will be fully replaced in order to cope with the new operating conditions. Prototype planar pixel sensors for the CMS Inner Tracker with square 50 μm × 50 μm and rectangular 100 μm × 25 μm pixels read out by the RD53A chip were characterized in the lab and at the DESY-II testbeam facility in order to identify designs that meet the requirements of CMS during the High-Luminosity running phase. A spatial resolution of approximately 3.4 μm (2 μm) is obtained using the modules with 50 μm × 50 μm (100 μm × 25 μm) pixels at the optimal angle of incidence before irradiation. After irradiation to a 1 MeV neutron equivalent fluence of Φeq = 5.3 × 10^15 cm^-2, a resolution of 9.4 μm is achieved at a bias voltage of 800 V using a module with 50 μm × 50 μm pixel size. All modules retain a hit efficiency in excess of 99% after irradiation to fluences up to 2.1 × 10^16 cm^-2. Further studies of the electrical properties of the modules, especially crosstalk, are also presented in this paper.BMWFWandFWF(Austria);FNRSandFWO(Belgium);CERN;MSEandCSF(Croatia);Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA K124850, and Bolyai Fellowship of the Hungarian Academy of Sciences (Hungary); DAE and DST (India); INFN (Italy); PAEC (Pakistan); SEIDI, CPAN, PCTI and FEDER(Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); STFC (United Kingdom); DOEandNSF(U.S.A.). This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 884104 (PSI-FELLOW-III-3i) and project AIDA-2020, GA no. 654168. Individuals have received support from HFRI (Greece)

    Luminosity determination using Z boson production at the CMS experiment

    Get PDF
    The measurement of Z boson production is presented as a method to determine the integrated luminosity of CMS data sets. The analysis uses proton–proton collision data, recorded by the CMS experiment at the CERN LHC in 2017 at a center-of-mass energy of 13 TeV . Events with Z bosons decaying into a pair of muons are selected. The total number of Z bosons produced in a fiducial volume is determined, together with the identification efficiencies and correlations from the same data set, in small intervals of 20 pb-1 of integrated luminosity, thus facilitating the efficiency and rate measurement as a function of time and instantaneous luminosity. Using the ratio of the efficiency-corrected numbers of Z bosons, the precisely measured integrated luminosity of one data set is used to determine the luminosity of another. For the first time, a full quantitative uncertainty analysis of the use of Z bosons for the integrated luminosity measurement is performed. The uncertainty in the extrapolation between two data sets, recorded in 2017 at low and high instantaneous luminosity, is less than 0.5%. We show that the Z boson rate measurement constitutes a precise method, complementary to traditional methods, with the potential to improve the measurement of the integrated luminosity

    Measurement of the Higgs boson mass and width using the four-lepton final state in proton-proton collisions at √s =13 TeV

    Get PDF
    A measurement of the Higgs boson mass and width via its decay to two (Formula presented) bosons is presented. Proton-proton collision data collected by the CMS experiment, corresponding to an integrated luminosity of (Formula presented) at a center-of-mass energy of 13 TeV, is used. The invariant mass distribution of four leptons in the on-shell Higgs boson decay is used to measure its mass and constrain its width. This yields the most precise single measurement of the Higgs boson mass to date, (Formula presented), and an upper limit on the width (Formula presented) at 95% confidence level. A combination of the on- and off-shell Higgs boson production decaying to four leptons is used to determine the Higgs boson width, assuming that no new virtual particles affect the production, a premise that is tested by adding new heavy particles in the gluon fusion loop model. This result is combined with a previous CMS analysis of the off-shell Higgs boson production with decay to two leptons and two neutrinos, giving a measured Higgs boson width of (Formula presented), in agreement with the standard model prediction of 4.1 MeV. The strength of the off-shell Higgs boson production is also reported. The scenario of no off-shell Higgs boson production is excluded at a confidence level corresponding to 3.8 standard deviations

    Search for new physics in high-mass diphoton events from proton-proton collisions at √s = 13 TeV

    Get PDF
    Results are presented from a search for new physics in high-mass diphoton events from proton-proton collisions at √s = 13 TeV. The data set was collected in 2016–2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb−1. Events with a diphoton invariant mass greater than 500 GeV are considered. Two different techniques are used to predict the standard model backgrounds: parametric fits to the smoothly-falling background and a first-principles calculation of the standard model diphoton spectrum at next-to-next-to-leading order in perturbative quantum chromodynamics calculations. The first technique is sensitive to resonant excesses while the second technique can identify broad differences in the invariant mass shape. The data are used to constrain the production of heavy Higgs bosons, Randall-Sundrum gravitons, the large extra dimensions model of Arkani-Hamed, Dimopoulos, and Dvali (ADD), and the continuum clockwork mechanism. No statistically significant excess is observed. The present results are the strongest limits to date on ADD extra dimensions and RS gravitons with a coupling parameter greater than 0.1

    Search for pair production of heavy particles decaying to a top quark and a gluon in the lepton+jets final state in proton–proton collisions at s=13TeV\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V}

    Get PDF
    A search is presented for the pair production of new heavy resonances, each decaying into a top quark (t) or antiquark and a gluon (g). The analysis uses data recorded with the CMS detector from proton-proton collisions at a center-of-mass energy of 13 TeV at the LHC, corresponding to an integrated luminosity of 138 fb1^{-1}. Events with one muon or electron, multiple jets, and missing transverse momentum are selected. After using a deep neural network to enrich the data sample with signal-like events, distributions in the scalar sum of the transverse momenta of all reconstructed objects are analyzed in the search for a signal. No significant deviations from the standard model prediction are found. Upper limits at 95% confidence level are set on the product of cross section and branching fraction squared for the pair production of excited top quarks in the t^∗ → tg decay channel. The upper limits range from 120 to 0.8 fb for a t^∗ with spin-1/2 and from 15 to 1.0 fb for a t∗ with spin-3/2. These correspond to mass exclusion limits up to 1050 and 1700 GeV for spin-1/2 and spin-3/2 t^∗ particles, respectively. These are the most stringent limits to date on the existence of t^∗ → tg resonances

    Reweighting simulated events using machine-learning techniques in the CMS experiment

    Get PDF
    Data analyses in particle physics rely on an accurate simulation of particle collisions and a detailed simulation of detector effects to extract physics knowledge from the recorded data. Event generators together with a geant-based simulation of the detectors are used to produce large samples of simulated events for analysis by the LHC experiments. These simulations come at a high computational cost, where the detector simulation and reconstruction algorithms have the largest CPU demands. This article describes how machine-learning (ML) techniques are used to reweight simulated samples obtained with a given set of parameters to samples with different parameters or samples obtained from entirely different simulation programs. The ML reweighting method avoids the need for simulating the detector response multiple times by incorporating the relevant information in a single sample through event weights. Results are presented for reweighting to model variations and higher-order calculations in simulated top quark pair production at the LHC. This ML-based reweighting is an important element of the future computing model of the CMS experiment and will facilitate precision measurements at the High-Luminosity LHC

    Observation of Λ Hyperon Local Polarization in p-Pb Collisions at sNN\sqrt{s_{NN}}=8.16 TeV

    Get PDF
    The polarization of the Λ and ¯Λ hyperons along the beam direction has been measured in proton-lead (p-Pb) collisions at a center-of-mass energy per nucleon pair of 8.16 TeV. The data were obtained with the CMS detector at the LHC and correspond to an integrated luminosity of 186.0 ±\pm 6.5 nb1^{−1}. A significant azimuthal dependence of the hyperon polarization, characterized by the second-order Fourier sine coefficient Pz;s2_{z;s2}, is observed. The Pz;s2_{z;s2} values decrease as a function of charged particle multiplicity, but increase with transverse momentum. A hydrodynamic model that describes the observed Pz;s2_{z;s2} values in nucleus-nucleus collisions by introducing vorticity effects does not reproduce either the sign or the magnitude of the p-Pb results. These observations pose a challenge to the current theoretical implementation of spin polarization in heavy ion collisions and offer new insights into the origin of spin polarization in hadronic collisions at LHC energies

    Search for heavy long-lived charged particles with large ionization energy loss in proton-proton collisions at s\sqrt{s} = 13 TeV

    Get PDF
    A search for heavy, long-lived, charged particles with large ionization energy loss within the silicon tracker of the CMS experiment is presented. A data set of proton-proton collisions at a center of mass energy at s\sqrt{s} = 13 TeV, collected in 2017 and 2018 at the CERN LHC, corresponding to an integrated luminosity of 101 fb1^{−1}, is used in this analysis. Two different approaches for the search are taken. A new method exploits the independence of the silicon pixel and strips measurements, while the second method improves on previous techniques using ionization to determine a mass selection. No significant excess of events above the background expectation is observed. The results are interpreted in the context of the pair production of supersymmetric particles, namely gluinos, top squarks, and tau sleptons, and of the Drell-Yan pair production of fourth generation (τ′) leptons with an electric charge equal to or twice the absolute value of the electron charge (e). An interpretation of a Z’ boson decaying to two τ′ leptons with an electric charge equal to 2e is presented for the first time. The 95% confidence upper limits on the production cross section are extracted for each of these hypothetical particles

    Proton reconstruction with the TOTEM Roman pot detectors for high- β* LHC data

    Get PDF
    The TOTEM Roman pot detectors are used to reconstruct the transverse momentum of scattered protons and to estimate the transverse location of the primary interaction. This paper presents new methods of track reconstruction, measurements of strip-level detection efficiencies, cross-checks of the LHC beam optics, and detector alignment techniques, along with their application in the selection of signal collision events. The track reconstruction is performed by exploiting hit cluster information through a novel method using a common polygonal area in the intercept-slope plane. The technique is applied in the relative alignment of detector layers with μm precision. A tag-and-probe method is used to extract strip-level detection efficiencies. The alignment of the Roman pot system is performed through time-dependent adjustments, resulting in a position accuracy of 3 μm in the horizontal and 60 μm in the vertical directions. The goal is to provide an optimal reconstruction tool for central exclusive physics analyses based on the high-β* data-taking period at √(s) = 13 TeV in 2018

    Search for heavy neutral resonances decaying to tau lepton pairs in proton-proton collisions at s=13 TeV

    Get PDF
    A search for heavy neutral gauge bosons ((Formula presented)) decaying into a pair of tau leptons is performed in proton-proton collisions at (Formula presented) at the CERN LHC. The data were collected with the CMS detector and correspond to an integrated luminosity of (Formula presented). The observations are found to be in agreement with the expectation from standard model processes. Limits at 95% confidence level are set on the product of the (Formula presented) production cross section and its branching fraction to tau lepton pairs for a range of (Formula presented) boson masses. For a narrow resonance in the sequential standard model scenario, a (Formula presented) boson with a mass below 3.5 TeV is excluded. This is the most stringent limit to date from this type of search
    corecore