95 research outputs found

    IgG light chain-independent secretion of heavy chain dimers: consequence for therapeutic antibody production and design

    Get PDF
    Rodent monoclonal antibodies with specificity towards important biological targets are developed for therapeutic use by a process of humanisation. This process involves the creation of molecules, which retain the specificity of the rodent antibody but contain predominantly human coding sequence. Here we show that some humanised heavy chains can fold, form dimers and be secreted even in the absence of light chain. Quality control of recombinant antibody assembly in vivo is thought to rely upon folding of the heavy chain CH1 domain. This domain acts as a switch for secretion, only folding upon interaction with the light chain CL domain. We show that the secreted heavy-chain dimers contain folded CH1 domains and contribute to the heterogeneity of antibody species secreted during the expression of therapeutic antibodies. This subversion of the normal quality control process is dependent upon the heavy chain variable domain, is prevalent with engineered antibodies and can occur when only the Fab fragments are expressed. This discovery will impact on the efficient production of both humanised antibodies as well as the design of novel antibody formats

    Mentally Healthy and Happy Exercise Your Mind

    Get PDF
    https://scholarworks.moreheadstate.edu/student_scholarship_posters/1014/thumbnail.jp

    Leopard density and determinants of space use in a farming landscape in South Africa

    Get PDF
    Protected areas are traditionally the foundation of conservation strategy, but land not formally protected is of particular importance for the conservation of large carnivores because of their typically wide-ranging nature. In South Africa, leopard (Panthera pardus) population decreases are thought to be occurring in areas of human development and intense negative interactions, but research is biased towards protected areas, with quantitative information on population sizes and trends in non-protected areas severely lacking. Using Spatially Explicit Capture-Recapture and occupancy techniques including 10 environmental and anthropogenic covariates, we analysed camera trap data from commercial farmland in South Africa where negative human-wildlife interactions are reported to be high. Our findings demonstrate that leopards persist at a moderate density (2.21 /100km2) and exhibit signs of avoidance from areas where lethal control measures are implemented. This suggests leopards have the potential to navigate mixed mosaic landscapes effectively, enhancing their chances of long-term survival and coexistence with humans. Mixed mosaics of agriculture that include crops, game and livestock farming should be encouraged and, providing lethal control is not ubiquitous in the landscape, chains of safer spaces should permit vital landscape connectivity. However, continuing to promote non-lethal mitigation techniques remains vital

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    The SUMO deconjugating peptidase Smt4 contributes to the mechanism required for transition from sister chromatid arm cohesion to sister chromatid pericentromere separation

    Get PDF
    The pericentromere chromatin protrudes orthogonally from the sister-sister chromosome arm axis. Pericentric protrusions are organized in a series of loops with the centromere at the apex, maximizing its ability to interact with stochastically growing and shortening kinetochore microtubules. Each pericentromere loop is ∼50 kb in size and is organized further into secondary loops that are displaced from the primary spindle axis. Cohesin and condensin are integral to mechanisms of loop formation and generating resistance to outward forces from kinesin motors and anti-parallel spindle microtubules. A major unanswered question is how the boundary between chromosome arms and the pericentromere is established and maintained. We used sister chromatid separation and dynamics of LacO arrays distal to the pericentromere to address this issue. Perturbation of chromatin spring components results in 2 distinct phenotypes. In cohesin and condensin mutants sister pericentric LacO arrays separate a defined distance independent of spindle length. In the absence of Smt4, a peptidase that removes SUMO modifications from proteins, pericentric LacO arrays separate in proportion to spindle length increase. Deletion of Smt4, unlike depletion of cohesin and condensin, causes stretching of both proximal and distal pericentromere LacO arrays. The data suggest that the sumoylation state of chromatin topology adjusters, including cohesin, condensin, and topoisomerase II in the pericentromere, contribute to chromatin spring properties as well as the sister cohesion boundary

    A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.

    Get PDF
    This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H

    Individual pericentromeres display coordinated motion and stretching in the yeast spindle

    Get PDF
    During mitosis, cohesin and condensin cross-link pericentromeres of different chromosomes to coordinate centromere attachment sites.The mitotic segregation apparatus composed of microtubules and chromatin functions to faithfully partition a duplicated genome into two daughter cells. Microtubules exert extensional pulling force on sister chromatids toward opposite poles, whereas pericentric chromatin resists with contractile springlike properties. Tension generated from these opposing forces silences the spindle checkpoint to ensure accurate chromosome segregation. It is unknown how the cell senses tension across multiple microtubule attachment sites, considering the stochastic dynamics of microtubule growth and shortening. In budding yeast, there is one microtubule attachment site per chromosome. By labeling several chromosomes, we find that pericentromeres display coordinated motion and stretching in metaphase. The pericentromeres of different chromosomes exhibit physical linkage dependent on centromere function and structural maintenance of chromosomes complexes. Coordinated motion is dependent on condensin and the kinesin motor Cin8, whereas coordinated stretching is dependent on pericentric cohesin and Cin8. Linking of pericentric chromatin through cohesin, condensin, and kinetochore microtubules functions to coordinate dynamics across multiple attachment sites

    Dyskerin, tRNA genes, and condensin tether pericentric chromatin to the spindle axis in mitosis

    Get PDF
    Condensin is enriched in the pericentromere of budding yeast chromosomes where it is constrained to the spindle axis in metaphase. Pericentric condensin contributes to chromatin compaction, resistance to microtubule-based spindle forces, and spindle length and variance regulation. Condensin is clustered along the spindle axis in a heterogeneous fashion. We demonstrate that pericentric enrichment of condensin is mediated by interactions with transfer ribonucleic acid (tRNA) genes and their regulatory factors. This recruitment is important for generating axial tension on the pericentromere and coordinating movement between pericentromeres from different chromosomes. The interaction between condensin and tRNA genes in the pericentromere reveals a feature of yeast centromeres that has profound implications for the function and evolution of mitotic segregation mechanisms
    corecore