34,392 research outputs found
Fundamental study of flow field generated by rotorcraft blades using wide-field shadowgraph
The vortex trajectory and vortex wake generated by helicopter rotors are visualized using a wide-field shadowgraph technique. Use of a retro-reflective Scotchlite screen makes it possible to investigate the flow field generated by full-scale rotors. Tip vortex trajectories are visible in shadowgraphs for a range of tip Mach number of 0.38 to 0.60. The effect of the angle of attack is substantial. At an angle of attack greater than 8 degrees, the visibility of the vortex core is significant even at relatively low tip Mach numbers. The theoretical analysis of the sensitivity is carried out for a rotating blade. This analysis demonstrates that the sensitivity decreases with increasing dimensionless core radius and increases with increasing tip Mach number. The threshold value of the sensitivity is found to be 0.0015, below which the vortex core is not visible and above which it is visible. The effect of the optical path length is also discussed. Based on this investigation, it is concluded that the application of this wide-field shadowgraph technique to a large wind tunnel test should be feasible. In addition, two simultaneous shadowgraph views would allow three-dimensional reconstruction of vortex trajectories
Charged particle display
An optical shutter based on charged particles is presented. The output light
intensity of the proposed device has an intrinsic dependence on the
interparticle spacing between charged particles, which can be controlled by
varying voltages applied to the control electrodes. The interparticle spacing
between charged particles can be varied continuously and this opens up the
possibility of particle based displays with continuous grayscale.Comment: typographic errors corrected in Eqs (37) and (39); published in
Journal of Applied Physics; doi:10.1063/1.317648
Hot Accretion With Conduction: Spontaneous Thermal Outflows
Motivated by the low-collisionality of gas accreted onto black holes in Sgr
A* and other nearby galactic nuclei, we study a family of 2D advective
accretion solutions with thermal conduction. While we only impose global
inflow, the accretion flow spontaneously develops bipolar outflows. The role of
conduction is key in providing the extra degree of freedom (latitudinal energy
transport) necessary to launch these rotating thermal outflows. The sign of the
Bernoulli constant does not discriminate between inflowing and outflowing
regions. Our parameter survey covers mass outflow rates from ~ 0 to 13% of the
net inflow rate, outflow velocities from ~0 to 11% of the local Keplerian
velocity and outflow opening angles from ~ 0 to 60 degs. As the magnitude of
conduction is increased, outflows can adopt a conical geometry, pure inflow
solutions emerge, and the limit of 2D non-rotating Bondi-like solutions is
eventually reached. These results confirm that radiatively-inefficient, hot
accretion flows have a hydrodynamical propensity to generate bipolar thermal
outflows.Comment: 38 pages, 10 figures, accepted for publication in Ap
Magnetic susceptibility study of hydrated and non-hydrated NaxCoO2-yH2O single crystals
We have measured the magnetic susceptibility of single crystal samples of
non-hydrated NaxCoO2 (x ~ 0.75, 0.67, 0.5, and 0.3) and hydrated Na0.3CoO2-yH2O
(y ~ 0, 0.6, 1.3). Our measurements reveal considerable anisotropy between the
susceptibilities with H||c and H||ab. The derived anisotropic g-factor ratio
(g_ab/g_c) decreases significantly as the composition is changed from the
Curie-Weiss metal with x = 0.75 to the paramagnetic metal with x = 0.3. Fully
hydrated Na0.3CoO2-1.3H2O samples have a larger susceptibility than
non-hydrated Na0.3CoO2 samples, as well as a higher degree of anisotropy. In
addition, the fully hydrated compound contains a small additional fraction of
anisotropic localized spins.Comment: 6 pages, 5 figure
Least-squares methods for identifying biochemical regulatory networks from noisy measurements
<b>Background</b>:
We consider the problem of identifying the dynamic interactions in biochemical networks from noisy experimental data. Typically, approaches for solving this problem make use of an estimation algorithm such as the well-known linear Least-Squares (LS) estimation technique. We demonstrate that when time-series measurements are corrupted by white noise and/or drift noise, more accurate and reliable identification of network interactions can be achieved by employing an estimation algorithm known as Constrained Total Least Squares (CTLS). The Total Least Squares (TLS) technique is a generalised least squares method to solve an overdetermined set of equations whose coefficients are noisy. The CTLS is a natural extension of TLS to the case where the noise components of the coefficients are correlated, as is usually the case with time-series measurements of concentrations and expression profiles in gene networks.
<b>Results</b>:
The superior performance of the CTLS method in identifying network interactions is demonstrated on three examples: a genetic network containing four genes, a network describing p53 activity and <i>mdm2</i> messenger RNA interactions, and a recently proposed kinetic model for interleukin (IL)-6 and (IL)-12b messenger RNA expression as a function of ATF3 and NF-κB promoter binding. For the first example, the CTLS significantly reduces the errors in the estimation of the Jacobian for the gene network. For the second, the CTLS reduces the errors from the measurements that are corrupted by white noise and the effect of neglected kinetics. For the third, it allows the correct identification, from noisy data, of the negative regulation of (IL)-6 and (IL)-12b by ATF3.
<b>Conclusion</b>:
The significant improvements in performance demonstrated by the CTLS method under the wide range of conditions tested here, including different levels and types of measurement noise and different numbers of data points, suggests that its application will enable more accurate and reliable identification and modelling of biochemical networks
Singularity analysis in Affine Toda Theories
The leading and the subleading Landau singularities in affine Toda field
theories are examined in some detail. Formulae describing the subleading simple
pole structure of box diagrams are given explicitly. This leads to a new and
nontrivial test of the conjectured exact S-matrices for these theories. We show
that to the one-loop level the conjectured S-matrices of the Toda family
reproduce the correct singularity structure, leading as well as subleading, of
the field theoretical amplitudes. The present test has the merit of being
independent of the details of the renormalisations.Comment: 15 pages, plain late
Effective Lagrangian from Higher Curvature Terms: Absence of vDVZ Discontinuity in AdS Space
We argue that the van Dam-Veltman-Zakharov discontinuity arising in the limit of the massive graviton through an explicit Pauli-Fierz mass term
could be absent in anti de Sitter space. This is possible if the graviton can
acquire mass spontaneously from the higher curvature terms or/and the massless
limit is attained faster than the cosmological constant . We discuss the effects of higher-curvature couplings and of an explicit
cosmological term () on stability of such continuity and of massive
excitations.Comment: 23 pages, Latex, the version to appear in Class. Quant. Gra
Recommended from our members
Development Of Third Harmonic Generation As A Short Pulse Probe Of Shock Heated Material
We are studying high-pressure laser produced shock waves in silicon (100). To examine the material dynamics, we are performing pump-probe style experiments utilizing 600 ps and 40 fs laser pulses from a Ti:sapphire laser. Two-dimensional interferometry reveals information about the shock breakout, while third harmonic light generated at the rear surface is used to infer the crystalline state of the material as a function of time. Sustained third harmonic generation (THG) during a similar to 100 kbar shock breakout indicate that the rear surface remains crystalline for at least 3 ns. However, a decrease in THG during a similar to 300 kbar shock breakout suggests a different behavior, which could include a change in crystalline structure.Mechanical Engineerin
Monopoles and Knots in Skyrme Theory
We show that the Skyrme theory actually is a theory of monopoles which allows
a new type of solitons, the topological knots made of monopole-anti-monopole
pair,which is different from the well-known skyrmions. Furthermore, we derive a
generalized Skyrme action from the Yang-Mills action of QCD, which we propose
to be an effective action of QCD in the infra-red limit. We discuss the
physical implications of our results.Comment: 4 pages. Phys. Rev. Lett. in pres
- …
