1,793 research outputs found
Paying More for Primary Care: Can It Help Bend the Medicare Cost Curve?
Estimates how a permanent 10 percent increase in Medicare fees for primary care ambulatory visits would affect the number and cost of visits and spending for inpatient and post-acute care. Considers primary care's role in bending the Medicare cost curve
Characterization of actin genes in Bonamia ostreae and their application to phylogeny of the Haplosporidia
Bonamia ostreae is a protozoan parasite that infects the European flat oyster Ostrea edulis, causing systemic infections and resulting in massive mortalities in populations of this valuable bivalve species. In this work, we have characterized B. ostreae actin genes and used their sequences for a phylogenetic analysis. Design of different primer sets was necessary to amplify the central coding region of actin genes of B. ostreae. Characterization of the sequences and their amplification in different samples demonstrated the presence of 2 intragenomic actin genes in B. ostreae, without any intron. The phylogenetic analysis placed B. ostreae in a clade with Minchinia tapetis, Minchinia teredinis and Haplosporidium costale as its closest relatives, and demonstrated that the paralogous actin genes found in Bonamia resulted from a duplication of the original actin gene after the Bonamia origi
Combination of carbon nanotubes and two-photon absorbers for broadband optical limiting
New systems are required for optical limiting against broadband laser pulses.
We demonstrate that the association of non-linear scattering from single-wall
carbon nanotubes (SWNT) and multiphoton absorption (MPA) from organic
chromophores is a promising approach to extend performances of optical limiters
over broad spectral and temporal ranges. Such composites display high linear
transmission and good neutral colorimetry and are particularly efficient in the
nanosecond regime due to cumulative effects.Comment: 5 avril 200
Diffraction based Hanbury Brown and Twiss interferometry performed at a hard x-ray free-electron laser
We demonstrate experimentally Hanbury Brown and Twiss (HBT) interferometry at
a hard X-ray Free Electron Laser (XFEL) on a sample diffraction patterns. This
is different from the traditional approach when HBT interferometry requires
direct beam measurements in absence of the sample. HBT analysis was carried out
on the Bragg peaks from the colloidal crystals measured at Linac Coherent Light
Source (LCLS). We observed high degree (80%) spatial coherence of the full beam
and the pulse duration of the monochromatized beam on the order of 11 fs that
is significantly shorter than expected from the electron bunch measurements.Comment: 32 pages, 10 figures, 2 table
Photoinduced suppression of the ferroelectric instability in PbTe
The interactions between electrons and phonons drive a large array of
technologically relevant material properties including ferroelectricity,
thermoelectricity, and phase-change behaviour. In the case of many group IV-VI,
V, and related materials, these interactions are strong and the materials exist
near electronic and structural phase transitions. Their close proximity to
phase instability produces a fragile balance among the various properties. The
prototypical example is PbTe whose incipient ferroelectric behaviour has been
associated with large phonon anharmonicity and thermoelectricity. Experimental
measurements on PbTe reveal anomalous lattice dynamics, especially in the soft
transverse optical phonon branch. This has been interpreted in terms of both
giant anharmonicity and local symmetry breaking due to off-centering of the Pb
ions. The observed anomalies have prompted renewed theoretical and
computational interest, which has in turn revived focus on the extent that
electron-phonon interactions drive lattice instabilities in PbTe and related
materials. Here, we use Fourier-transform inelastic x-ray scattering (FT-IXS)
to show that photo-injection of free carriers stabilizes the paraelectric
state. With support from constrained density functional theory (CDFT)
calculations, we find that photoexcitation weakens the long-range forces along
the cubic direction tied to resonant bonding and incipient ferroelectricity.
This demonstrates the importance of electronic states near the band edges in
determining the equilibrium structure.Comment: 9 page, 3 figure
How efficient are coronal mass ejections at accelerating solar energetic particles?
The largest solar energetic particle (SEP) events are thought to be due to particle acceleration at a shock driven by a fast coronal mass ejection (CME). We investigate the efficiency of this process by comparing the total energy content of energetic particles with the kinetic energy of the associated CMEs. The energy content of 23 large SEP events from 1998 through 2003 is estimated based on data from ACE, GOES, and SAMPEX, and interpreted using the results of particle transport simulations and inferred longitude distributions. CME data for these events are obtained from SOHO. When compared to the estimated kinetic energy of the associated coronal mass ejections (CMEs), it is found that large SEP events can extract ~10% or more of the CME kinetic energy. The largest SEP events appear to require massive, very energetic CMEs
- …
