413 research outputs found

    An effective mesh strategy for CFD modelling of polymer electrolyte membrane fuel cells

    Get PDF
    Computational fluid dynamics (CFD) is a major tool in PEM fuel cell research. Typical three-dimensional PEM fuel cell models involve more than 106 mesh elements. This makes the computation very intense and necessitates a methodology to mesh the computational domain that can keep the number of elements to a minimum while maintaining good accuracy. In this study, the effect of computational mesh in each direction on the accuracy of the solution is investigated in a systematic way. It is found that the mesh in different directions has a different degree of influence on the solution suggesting that the mesh in one direction can be coarser than the other. The proposed mesh strategy is capable of greatly reducing the number of mesh elements, hence computation time, while preserving the characteristics of important flow-field variables. Moreover, it is applicable to a wide range of cell sizes and flow-field configurations and should be used as a guideline for mesh generation

    Meshing strategy for PEM fuel cells CFD modelling – a systematic approach

    Get PDF
    Typical PEM fuel cell models usually involve more than one million mesh elements making the computation very intense. This necessitates an effective way to mesh the computational domain with a minimum number of mesh points while, at the same time, maintaining good accuracy. The meshing strategy in each flow direction is investigated systematically in the current study and it has been found that mesh resolution in different directions has a different degree of influence on the accuracy of solutions. The proposed meshing strategy is capable of greatly reducing the number of mesh elements, hence computation time, while preserving the characteristics of important flow-field variable

    PrEP as a feature in the optimal landscape of combination HIV prevention in sub-Saharan Africa

    Get PDF
    INTRODUCTION: The new WHO guidelines recommend offering pre-exposure prophylaxis (PrEP) to people who are at substantial risk of HIV infection. However, where PrEP should be prioritised, and for which population groups, remains an open question. The HIV landscape in sub-Saharan Africa features limited prevention resources, multiple options for achieving cost saving, and epidemic heterogeneity. This paper examines what role PrEP should play in optimal prevention in this complex and dynamic landscape. METHODS: We use a model that was previously developed to capture subnational HIV transmission in sub-Saharan Africa. With this model, we can consider how prevention funds could be distributed across and within countries throughout sub-Saharan Africa to enable optimal HIV prevention (that is, avert the greatest number of infections for the lowest cost). Here, we focus on PrEP to elucidate where, and to whom, it would optimally be offered in portfolios of interventions (alongside voluntary medical male circumcision, treatment as prevention, and behaviour change communication). Over a range of continental expenditure levels, we use our model to explore prevention patterns that incorporate PrEP, exclude PrEP, or implement PrEP according to a fixed incidence threshold. RESULTS: At low-to-moderate levels of total prevention expenditure, we find that the optimal intervention portfolios would include PrEP in only a few regions and primarily for female sex workers (FSW). Prioritisation of PrEP would expand with increasing total expenditure, such that the optimal prevention portfolios would offer PrEP in more subnational regions and increasingly for men who have sex with men (MSM) and the lower incidence general population. The marginal benefit of including PrEP among the available interventions increases with overall expenditure by up to 14% (relative to excluding PrEP). The minimum baseline incidence for the optimal offer of PrEP declines for all population groups as expenditure increases. We find that using a fixed incidence benchmark to guide PrEP decisions would incur considerable losses in impact (up to 7%) compared with an approach that uses PrEP more flexibly in light of prevailing budget conditions. CONCLUSIONS: Our findings suggest that, for an optimal distribution of prevention resources, choices of whether to implement PrEP in subnational regions should depend on the scope for impact of other possible interventions, local incidence in population groups, and total resources available. If prevention funding were to become restricted in the future, it may be suboptimal to use PrEP according to a fixed incidence benchmark, and other prevention modalities may be more cost-effective. In contrast, expansions in funding could permit PrEP to be used to its full potential in epidemiologically driven prevention portfolios and thereby enable a more cost-effective HIV response across Africa

    Transient performance investigation of different flow-field designs of automotive polymer electrolyte membrane fuel cell (PEMFC) using computational fluid dynamics (CFD)

    Get PDF
    Paper presented to the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Florida, 14-16 July 2014.Transient performance of a polymer electrolyte membrane (PEM) fuel cell in terms of the time-dependent current density profile that responds to the varying cell potential is of critical importance for an automotive PEM fuel cell. A step change in cell potential is applied to the cell terminals to simulate a sudden change in load demand due to an engine startup or very high acceleration. The transient responses of the three most commonly used flow-fields, namely, parallel, single-serpentine, and interdigitated designs in terms of the magnitude of current overshoot and time taken to adjust to the new equilibrium state are compared. The results suggest the serpentine flow-field outperforms its two counterparts as it balances the satisfactory transient performance with an expense of acceptable pressure drop across the cell and hence it is the most appropriate design to be used in automotive PEM fuel cells.dc201

    Modeling the Probability of HIV Infection over Time in High-Risk Seronegative Participants Receiving Placebo in Five Randomized Double-Blind Placebo-Controlled HIV Pre-Exposure Prophylaxis Trials: A Patient-Level Pooled Analysis.

    Get PDF
    The World Health Organization recommends pre-exposure prophylaxis (PrEP) for individuals at substantial risk of HIV infection. The aim of this analysis is to quantify the individual risk of HIV infection over time, using a large database of high-risk individuals (n = 5583). We used data from placebo recipients in five phase III PrEP trials: iPrEx, conducted in men who have sex with men and transgender women; VOICE, conducted in young women at high sexual risk; Partners PrEP, conducted in HIV serodiscordant heterosexual couples; TDF2, conducted in high-risk heterosexual men and women; and BTS, conducted in persons who inject drugs. The probability of HIV infection over time was estimated using NONMEM7.4. We identified predictors of HIV risk and found a substantial difference in the risk of infection among and within trial populations, with each study including a mix of low, moderate, and high-risk individuals (p < 0.05). Persons who were female at birth were at a higher risk of HIV infection than people who were male at birth. Final models were integrated in a tool that can assess person-specific risk and simulate cumulative HIV risk over time. These models can be used to optimize future PrEP clinical trials by identifying potential participants at highest risk
    corecore