1,535 research outputs found
Conditional control of the quantum states of remote atomic memories for quantum networking
Quantum networks hold the promise for revolutionary advances in information
processing with quantum resources distributed over remote locations via
quantum-repeater architectures. Quantum networks are composed of nodes for
storing and processing quantum states, and of channels for transmitting states
between them. The scalability of such networks relies critically on the ability
to perform conditional operations on states stored in separated quantum
memories. Here we report the first implementation of such conditional control
of two atomic memories, located in distinct apparatuses, which results in a
28-fold increase of the probability of simultaneously obtaining a pair of
single photons, relative to the case without conditional control. As a first
application, we demonstrate a high degree of indistinguishability for remotely
generated single photons by the observation of destructive interference of
their wavepackets. Our results demonstrate experimentally a basic principle for
enabling scalable quantum networks, with applications as well to linear optics
quantum computation.Comment: 10 pages, 8 figures; Minor corrections. References updated. Published
at Nature Physics 2, Advanced Online Publication of 10/29 (2006
Making optical atomic clocks more stable with level laser stabilization
The superb precision of an atomic clock is derived from its stability. Atomic
clocks based on optical (rather than microwave) frequencies are attractive
because of their potential for high stability, which scales with operational
frequency. Nevertheless, optical clocks have not yet realized this vast
potential, due in large part to limitations of the laser used to excite the
atomic resonance. To address this problem, we demonstrate a cavity-stabilized
laser system with a reduced thermal noise floor, exhibiting a fractional
frequency instability of . We use this laser as a stable
optical source in a Yb optical lattice clock to resolve an ultranarrow 1 Hz
transition linewidth. With the stable laser source and the signal to noise
ratio (S/N) afforded by the Yb optical clock, we dramatically reduce key
stability limitations of the clock, and make measurements consistent with a
clock instability of
Progenitor-like cells derived from mouse kidney protect against renal fibrosis in a remnant kidney model via decreased endothelial mesenchymal transition
Showing A quantification of GFP-positive cells in the lung after intravenous injection of MKPCs in five-sixths nephrectomized mice (y axis shows the number of cells, while the x axis (FL1-H) shows the fluorescence intensity; M1 is the area of GFP-positive cells) and B immunohistochemistry of the lung after intravenous injection of MKPCs into a mouse that underwent five-sixths nephrectomy. Few GFP positive cells were found in the lung at the first day but there were no GFP-positive cells at week 14. (TIFF 2253 kb
Mapping photonic entanglement into and out of a quantum memory
Recent developments of quantum information science critically rely on
entanglement, an intriguing aspect of quantum mechanics where parts of a
composite system can exhibit correlations stronger than any classical
counterpart. In particular, scalable quantum networks require capabilities to
create, store, and distribute entanglement among distant matter nodes via
photonic channels. Atomic ensembles can play the role of such nodes. So far, in
the photon counting regime, heralded entanglement between atomic ensembles has
been successfully demonstrated via probabilistic protocols. However, an
inherent drawback of this approach is the compromise between the amount of
entanglement and its preparation probability, leading intrinsically to low
count rate for high entanglement. Here we report a protocol where entanglement
between two atomic ensembles is created by coherent mapping of an entangled
state of light. By splitting a single-photon and subsequent state transfer, we
separate the generation of entanglement and its storage. After a programmable
delay, the stored entanglement is mapped back into photonic modes with overall
efficiency of 17 %. Improvements of single-photon sources together with our
protocol will enable "on demand" entanglement of atomic ensembles, a powerful
resource for quantum networking.Comment: 7 pages, and 3 figure
Heralded quantum entanglement between two crystals
Quantum networks require the crucial ability to entangle quantum nodes. A
prominent example is the quantum repeater which allows overcoming the distance
barrier of direct transmission of single photons, provided remote quantum
memories can be entangled in a heralded fashion. Here we report the observation
of heralded entanglement between two ensembles of rare-earth-ions doped into
separate crystals. A heralded single photon is sent through a 50/50
beamsplitter, creating a single-photon entangled state delocalized between two
spatial modes. The quantum state of each mode is subsequently mapped onto a
crystal, leading to an entangled state consisting of a single collective
excitation delocalized between two crystals. This entanglement is revealed by
mapping it back to optical modes and by estimating the concurrence of the
retrieved light state. Our results highlight the potential of rare-earth-ions
doped crystals for entangled quantum nodes and bring quantum networks based on
solid-state resources one step closer.Comment: 10 pages, 5 figure
Demonstration of entanglement-by-measurement of solid state qubits
Projective measurements are a powerful tool for manipulating quantum states.
In particular, a set of qubits can be entangled by measurement of a joint
property such as qubit parity. These joint measurements do not require a direct
interaction between qubits and therefore provide a unique resource for quantum
information processing with well-isolated qubits. Numerous schemes for
entanglement-by-measurement of solid-state qubits have been proposed, but the
demanding experimental requirements have so far hindered implementations. Here
we realize a two-qubit parity measurement on nuclear spins in diamond by
exploiting the electron spin of a nitrogen-vacancy center as readout ancilla.
The measurement enables us to project the initially uncorrelated nuclear spins
into maximally entangled states. By combining this entanglement with
high-fidelity single-shot readout we demonstrate the first violation of Bells
inequality with solid-state spins. These results open the door to a new class
of experiments in which projective measurements are used to create, protect and
manipulate entanglement between solid-state qubits.Comment: 6 pages, 4 figure
A solid state light-matter interface at the single photon level
Coherent and reversible mapping of quantum information between light and
matter is an important experimental challenge in quantum information science.
In particular, it is a decisive milestone for the implementation of quantum
networks and quantum repeaters. So far, quantum interfaces between light and
atoms have been demonstrated with atomic gases, and with single trapped atoms
in cavities. Here we demonstrate the coherent and reversible mapping of a light
field with less than one photon per pulse onto an ensemble of 10 millions atoms
naturally trapped in a solid. This is achieved by coherently absorbing the
light field in a suitably prepared solid state atomic medium. The state of the
light is mapped onto collective atomic excitations on an optical transition and
stored for a pre-programmed time up of to 1 mu s before being released in a
well defined spatio-temporal mode as a result of a collective interference. The
coherence of the process is verified by performing an interference experiment
with two stored weak pulses with a variable phase relation. Visibilities of
more than 95% are obtained, which demonstrates the high coherence of the
mapping process at the single photon level. In addition, we show experimentally
that our interface allows one to store and retrieve light fields in multiple
temporal modes. Our results represent the first observation of collective
enhancement at the single photon level in a solid and open the way to multimode
solid state quantum memories as a promising alternative to atomic gases.Comment: 5 pages, 5 figures, version submitted on June 27 200
Molecular lattice clock with long vibrational coherence
Atomic lattice clocks have spurred numerous ideas for tests of fundamental
physics, detection of general relativistic effects, and studies of interacting
many-body systems. On the other hand, molecular structure and dynamics offer
rich energy scales that are at the heart of new protocols in precision
measurement and quantum information science. Here we demonstrate a
fundamentally distinct type of lattice clock that is based on vibrations in
diatomic molecules, and present coherent Rabi oscillations between weakly and
deeply bound molecules that persist for 10's of milliseconds. This control is
made possible by a state-insensitive magic lattice trap that weakly couples to
molecular vibronic resonances and enhances the coherence time between molecules
and light by several orders of magnitude. The achieved quality factor
results from 30-Hz narrow resonances for a 25-THz clock
transition in Sr. Our technique of extended coherent manipulation is
applicable to long-term storage of quantum information in qubits based on
ultracold polar molecules, while the vibrational clock enables precise probes
of interatomic forces, tests of Newtonian gravitation at ultrashort range, and
model-independent searches for electron-to-proton mass ratio variations
Expanding genotype/phenotype of neuromuscular diseases by comprehensive target capture/NGS
published_or_final_versio
Photonic quantum state transfer between a cold atomic gas and a crystal
Interfacing fundamentally different quantum systems is key to build future
hybrid quantum networks. Such heterogeneous networks offer superior
capabilities compared to their homogeneous counterparts as they merge
individual advantages of disparate quantum nodes in a single network
architecture. However, only very few investigations on optical
hybrid-interconnections have been carried out due to the high fundamental and
technological challenges, which involve e.g. wavelength and bandwidth matching
of the interfacing photons. Here we report the first optical quantum
interconnection between two disparate matter quantum systems with photon
storage capabilities. We show that a quantum state can be faithfully
transferred between a cold atomic ensemble and a rare-earth doped crystal via a
single photon at telecommunication wavelength, using cascaded quantum frequency
conversion. We first demonstrate that quantum correlations between a photon and
a single collective spin excitation in the cold atomic ensemble can be
transferred onto the solid-state system. We also show that single-photon
time-bin qubits generated in the cold atomic ensemble can be converted, stored
and retrieved from the crystal with a conditional qubit fidelity of more than
. Our results open prospects to optically connect quantum nodes with
different capabilities and represent an important step towards the realization
of large-scale hybrid quantum networks
- …
