79 research outputs found
Recommended from our members
Pointing errors in non-metric virtual environments
There have been suggestions that human navigation may depend on representations that have no metric, Euclidean interpretation but that hypothesis remains contentious. An alternative is that observers build a consistent 3D representation of space. Using immersive virtual reality, we measured the ability of observers to point to targets in mazes that had zero, one or three ‘wormholes’ – regions where the maze changed in configuration (invisibly). In one model, we allowed the configuration of the maze to vary to best explain the pointing data; in a second model we also allowed the local reference frame to be rotated through 90, 180 or 270 degrees. The latter model outperformed the former in the wormhole conditions, inconsistent with a Euclidean cognitive map
Removal of cationic pollutants from water by xanthated corn cob: optimization, kinetics, thermodynamics, and prediction of purification process
The removal of Cr(III) ions and methylene blue (MB) from aqueous solutions by xanthated corn cob (xCC) in batch conditions was investigated. The sorption capacity of xCC strongly depended of the pH, and increase when the pH rises. The kinetics was well fitted by pseudo-second order and Chrastil’s model. Sorption of Cr(III) ions and MB on xCC was rapid during the first 20 min of contact time and, thereafter, the biosorption rate decrease gradually until reaching equilibrium. The maximum sorption capacity of 17.13 and 83.89 mg g-1 for Cr(III) ions and MB, respectively was obtained at 40 °C, pH 5 and sorbent dose 4 g dm-3 for removal of Cr(III) ions and 1 g dm-3 for removal of MB. The prediction of purification process was successfully carried out and the verification of theoretically calculated amounts of sorbent was confirmed by using packed-bed column laboratory system with recirculation of the aqueous phase. The wastewater from chrome plating industry was successfully purified, i.e. after 40 min concentration of Cr(III) ions was decreased lower than 0.1 mg dm-3. Also, removal of MB from the river water was successfully carried out and after 40 min removal efficiency was about 94 %
A network linking scene perception and spatial memory systems in posterior cerebral cortex
The neural systems supporting scene-perception and spatial-memory systems of the human brain are well-described. But how do these neural systems interact? Here, using fine-grained individual-subject fMRI, we report three cortical areas of the human brain, each lying immediately anterior to a region of the scene perception network in posterior cerebral cortex, that selectively activate when recalling familiar real-world locations. Despite their close proximity to the scene-perception areas, network analyses show that these regions constitute a distinct functional network that interfaces with spatial memory systems during naturalistic scene understanding. These “place-memory areas” offer a new framework for understanding how the brain implements memory-guided visual behaviors, including navigation
Preparação, caracterização e degradação de blendas PS/TPS usando glicerol e óleo de buriti como plastificantes
Solubility of Acetazolamide in Supercritical Carbon Dioxide in the Presence of Ethanol as a Cosolvent
Equilibrium solubility of acetazolamide, a carbonic-anhydrase inhibitor, in supercritical carbon dioxide in the presence of a cosolvent was measured by a static analytical method for three mole fractions of ethanol (5, 7.5, and 10) % at 313.0 K from (13.0 to 21.0) MPa and at 323.0 K from (13.0 to 21.0) MPa for a mole fraction of 5% ethanol The presence of a cosolvent (ethanol) was essential for the solubilization of the bioactive compound in supercritical carbon dioxide. The results obtained are useful for the design of supercritical processes with this drug. Experimental solubility data were correlated with two enhanced density-based models (Chrastil, I. Solubility of Solids in Supercritical Gases. J. Phys. Chem. 1982, 86, 3016−3021; Santiago, J. M.; Teja, A. S. The solubility of solids in supercritical fluids. Fluid Phase Equilib. 1999, 158−160, 501−510)
Solubility of Flurbiprofen in Supercritical Carbon Dioxide
Equilibrium solubility of flurbiprofen, a nonsteroidal antiinflammatory agent, in supercritical carbon dioxide was measured by a static analytical method in the pressure range from (8.0 to 25.0) MPa, at temperatures of (303.0, 313.0, and 323.0) K. The cosolvent effect of ethanol in the solubility of the bioactive compound in supercritical carbon dioxide was investigated at 18 MPa and 313 K. The results obtained have a potential application in supercritical processes for this drug. Experimental solubility data were correlated with an empirical density-based Chrastil model
Experimental Determination and Correlation of Artemisinin's Solubility in Supercritical Carbon Dioxide
The measurement and correlation of the experimental solubility of the antimalarial artemisinin (Artemisia annua L.) in supercritical carbon dioxide is reported. Results were obtained using a static analytical method at 308.2, 318.2, and 328.2 K, and in a pressure range from 10.0 up to 25.0 MPa. Solubility experimental data were correlated with three density-based models (Chrastil, Bartle, and Méndez-Santiago−Teja models) and with two cubic equation of state (EOS) models, namely, the Peng−Robinson EOS and the Soave−Redlich−Kwong EOS, together with the conventional van der Waals mixing and combining rules. Good correlation results were obtained between the calculated and the experimental solubility to all fitted models. Results clearly show the feasibility of processing this antimalarial drug using supercritical fluid technologies and processes
- …
