42 research outputs found

    Thoracic Ultrasound: What Non-radiologists Need to Know

    Get PDF
    PURPOSE OF REVIEW: The aim of this review is to provide the theoretical and practical knowledge essential for non-radiologists to develop the skills necessary to apply thoracic ultrasound as an extension of clinical assessment and intervention. RECENT FINDINGS: Issues relating to training and competence are discussed and a library of thoracic ultrasound videos is provided to illustrate artefacts, pleural, parenchymal and pneumothorax pathology as well as important pitfalls to consider. Novel and future diagnostic applications of thoracic ultrasound in the setting of acute cardiorespiratory pathology including consolidation, acute interstitial syndromes and pulmonary embolism are explored. SUMMARY: Thoracic ultrasound requires an understanding of imaging artefact specific to lung and pleura and a working knowledge of machine knobology for image optimisation and interpretation. Ultrasound is a valuable tool for the practicing chest clinician providing diagnostic information for the assessment of pleural and parenchymal disease and increased safety and cost effectiveness of thoracic interventions. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13665-017-0164-1) contains supplementary material, which is available to authorized users

    Blocking notch3 signaling abolishes MUC5AC production in airway epithelial cells from individuals with asthma

    Get PDF
    In asthma, goblet cell numbers are increased within the airway epithelium, perpetuating the production of mucus that is more difficult to clear and results in airway mucus plugging. Notch1, Notch2, or Notch3, or a combination of these has been shown to influence the differentiation of airway epithelial cells. How the expression of specific Notch isoforms differs in fully differentiated adult asthmatic epithelium and whether Notch influences mucin production after differentiation is currently unknown. We aimed to quantify different Notch isoforms in the airway epithelium of individuals with severe asthma and to examine the impact of Notch signaling on mucin MUC5AC. Human lung sections and primary bronchial epithelial cells from individuals with and without asthma were used in this study. Primary bronchial epithelial cells were differentiated at the air-liquid interface for 28 days. Notch isoform expression was analyzed by Taqman quantitative PCR. Immunohistochemistry was used to localize and quantify Notch isoforms in human airway sections. Notch signaling was inhibited in vitro using dibenzazepine or Notch3-specific siRNA, followed by analysis of MUC5AC. NOTCH3 was highly expressed in asthmatic airway epithelium compared with nonasthmatic epithelium. Dibenzazepine significantly reduced MUC5AC production in air-liquid interface cultures of primary bronchial epithelial cells concomitantly with suppression of NOTCH3 intracellular domain protein. Specific knockdown using NOTCH3 siRNA recapitulated the dibenzazepine-induced reduction in MUC5AC. We demonstrate that NOTCH3 is a regulator of MUC5AC production. Increased NOTCH3 signaling in the asthmatic airway epithelium may therefore be an underlying driver of excess MUC5AC production.</p

    Bronchoconstriction and Airway Biology:Potential Impact and Therapeutic Opportunities

    Get PDF
    Recent work has demonstrated that mechanical forces occurring in the airway as a consequence of bronchoconstriction are sufficient to not only induce symptoms but also influence airway biology. Animal and human in vitro and in vivo work demonstrates that the airways are structurally and functionally altered by mechanical stress induced by bronchoconstriction. Compression of the airway epithelium and mechanosensing by the airway smooth muscle trigger the activation and release of growth factors, causing cell proliferation, extracellular matrix protein accumulation, and goblet cell differentiation. These effects of bronchoconstriction are of major importance to asthma pathophysiology and appear sufficient to induce remodeling independent of the inflammatory response. We review these findings in detail and discuss previous studies in light of this new evidence regarding the influence of mechanical forces in the airways. Furthermore, we highlight potential impacts of therapies influencing mechanical forces on airway structure and function in asthma

    Bronchoconstriction and Airway Biology:Potential Impact and Therapeutic Opportunities

    No full text
    Recent work has demonstrated that mechanical forces occurring in the airway as a consequence of bronchoconstriction are sufficient to not only induce symptoms but also influence airway biology. Animal and human in vitro and in vivo work demonstrates that the airways are structurally and functionally altered by mechanical stress induced by bronchoconstriction. Compression of the airway epithelium and mechanosensing by the airway smooth muscle trigger the activation and release of growth factors, causing cell proliferation, extracellular matrix protein accumulation, and goblet cell differentiation. These effects of bronchoconstriction are of major importance to asthma pathophysiology and appear sufficient to induce remodeling independent of the inflammatory response. We review these findings in detail and discuss previous studies in light of this new evidence regarding the influence of mechanical forces in the airways. Furthermore, we highlight potential impacts of therapies influencing mechanical forces on airway structure and function in asthma.</p
    corecore