607 research outputs found

    Accelerating U.S. Clean Energy Deployment: Investor Policy Priorities

    Get PDF
    International investment to mitigate climate change is far below levels needed to reach the two-degree target. The International Energy Agency estimates that an average of an additional 1trillioninincrementalfinancingforcleanenergyisneededtomeetthetemperaturetarget.InSeptember2014,over350investorsrepresenting1 trillion in incremental financing for clean energy is needed to meet the temperature target. In September 2014, over 350 investors representing 24 trillion in assets issued the Global Investor Statement on Climate Change, calling on governments to create an ambitious global agreement that includes a meaningful price on carbon -- the "Clean Trillion."This paper connects the Clean Trillion goal to the current United States climate and clean energy policy framework, which is a mixture of federal, state, and local initiatives. The paper outlines the 2015 U.S. policy priorities of the Policy Working Group of the Investor Network on Climate Risk (INCR), a network of more than 110 institutional investors primarily based in the U.S., focused on investment risks and opportunities associated with climate change

    Assessment of cooling methods for increased power density in electrical machines

    Get PDF
    A comprehensive thermal analysis of three different electrical machines is presented, with a view of identifying design aspects that can be exploited to achieve higher power density. A review of some novel cooling methods is initially made. Following this, the stator and rotor thermal resistance paths of the three selected machines are created and the individual components of each resistance path mathematically analysed to identify the parts of the machines that provide greatest potential to reduce stator and rotor temperatures. This is verified with a Design of Experiments analysis on the thermal resistance models of each. Finally, a different novel cooling method is applied to the model of each machine, demonstrating the typical temperature reductions that can be achieved

    Development of Low-Toxicity Wastewater Stabilization for Spacecraft Water Recovery Systems

    Get PDF
    Wastewater stabilization was an essential component of the spacecraft water cycle. The purpose of stabilizing wastewater was two-fold. First, stabilization prevents the breakdown of urea into ammonia, a toxic gas at high concentrations. Second, it prevents the growth of microorganisms, thereby mitigating hardware and water quality issues due to due biofilm and planktonic growth. Current stabilization techniques involve oxidizers and strong acids (pH=2) such as chromic and sulfuric acid, which are highly toxic and pose a risk to crew health. The purpose of this effort was to explore less toxic stabilization techniques, such as food-grade and commercial care preservatives. Additionally, certain preservatives were tested in the presence of a low-toxicity organic acid. Triplicate 300-mL volumes of urine were dosed with a predetermined quantity of stabilizer and stored for two weeks. During that time, pH, total organic carbon (TOC), ammonia, and turbidity were monitored. Those preservatives that showed the lowest visible microbial growth and stable pH were further tested in a six-month stability study. The results of the six-month study are also included in this paper

    Computational fluid dynamics modelling of an entire synchronous generator for improved thermal management

    Get PDF
    This study is the first in a series dedicated to investigating the airflow and thermal management of electrical machines. Owing to the temperature dependent resistive losses in the machine's windings, any improvement in cooling provides a direct reduction in losses and an increase in efficiency. This study focuses on the airflow which is intrinsically linked to the thermal behaviour of the machine as well as the windage power consumed to drive the air through the machine. A full computational fluid dynamics (CFD) model has been used to analyse the airflow around all major components of the machine. Results have been experimentally validated and investigated. At synchronous speed the experimentally tested mass flow rate and windage torque were under predicted by 4% and 7%, respectively, by the CFD. A break-down of torque by component shows that the fan consumes approximately 87% of the windage torque

    Cleanser, Detergent, Personal Care Product, and Pretreatment Evaluation

    Get PDF
    The purpose of the Cleanser, Detergent, Personal Care Product, and Pretreatment Evaluation & Selection task is to identify the optimal combination of personal hygiene products, crew activities, and pretreatment strategies to provide the crew with sustainable life support practices and a comfortable habitat. Minimal energy, mass, and crew time inputs are desired to recycle wastewater during long duration missions. This document will provide a brief background on the work this past year supporting the ELS Distillation Comparison Test, issues regarding use of the hygiene products originally chosen for the test, methods and results used to select alternative products, and lessons learned from testing

    Ion Exchange Technology Development in Support of the Urine Processor Assembly Precipitation Prevention Project for the International Space Station

    Get PDF
    In support of the Urine Processor Assembly Precipitation Prevention Project (UPA PPP), multiple technologies were explored to prevent CaSO4 dot 2H2O (gypsum) precipitation during the on-orbit distillation process. Gypsum precipitation currently limits the water recovery rate onboard the International Space Station (ISS) to 70% versus the planned 85% target water recovery rate. Due to its advanced performance in removing calcium cations in pretreated augmented urine (PTAU), ion exchange was selected as one of the technologies for further development by the PPP team. A total of 12 ion exchange resins were evaluated in various equilibrium and dynamic column tests with solutions of dissolved gypsum, urine ersatz, PTAU, and PTAU brine at 85% water recovery. While initial evaluations indicated that the Purolite SST60 resin had the highest calcium capacity in PTAU (0.30 meq/mL average), later tests showed that the Dowex G26 and Amberlite FPC12H resins had the highest capacity (0.5 meq/mL average). Further dynamic column testing proved that G26 performance is +/- 10% of that value at flow rates of 0.45 and 0.79 Lph under continuous flow, and 10.45 Lph under pulsed flow. Testing at the Marshall Spaceflight Center (MSFC) integrates the ion exchange technology with a UPA ground article under flight-like pulsed flow conditions with PTAU. To date, no gypsum precipitation has taken place in any of the initial evaluations

    Development of a Low Toxicity Urine Pretreatment for Water Recovery in Space

    Get PDF
    Wastewater stabilization was an essential component of the spacecraft water cycle. The purpose of stabilizing wastewater was two-fold. First, stabilization prevents the breakdown of urea into ammonia, a toxic gas at high concentrations. Second, it prevents the growth of microorganisms, thereby mitigating hardware and water quality issues due to due biofilm and planktonic growth. Current stabilization techniques involve oxidizers and strong acids (pH=2) such as chromic and sulfuric acid, which are highly toxic and pose a risk to crew health. The purpose of this effort was to explore less toxic stabilization techniques, such as food-grade and commercial care preservatives. Additionally, certain preservatives were tested in the presence of a low-toxicity organic acid. Triplicate 300-mL volumes of urine were dosed with a predetermined quantity of stabilizer and stored for two weeks. During that time, pH, total organic carbon (TOC), ammonia, and turbidity were monitored. Those preservatives that showed the lowest visible microbial growth and stable pH were further tested in a six-month stability study. The results of the six-month study are also included in this paper. Additionally, the pretreatment formulations were tested to determine if the pretreated urine could be distilled to remove 85% of the water, as would occur on the ISS. The goal of the pretreatment was to produce no solids in the resulting brine at 85% water recovery

    Heart Fatty Acid Binding Protein and cardiac troponin: development of an optimal rule-out strategy for acute myocardial infarction

    Get PDF
    Background: Improved ability to rapidly rule-out Acute Myocardial Infarction (AMI) in patients presenting with chest pain will promote decongestion of the Emergency Department (ED) and reduce unnecessary hospital admissions. We assessed a new commercial Heart Fatty Acid Binding Protein (H-FABP) assay for additional diagnostic value when combined with cardiac troponin (using a high sensitivity assay). Methods: H-FABP and high-sensitivity troponins I (hs-cTnI) and T (hs-cTnT) were measured in samples taken on-presentation from patients, attending the ED, with symptoms triggering investigation for possible acute coronary syndrome. The optimal combination of H-FABP with each hs-cTn was defined as that which maximized the proportion of patients with a negative test (low-risk) whilst maintaining at least 99 % sensitivity for AMI. A negative test comprised both H-FABP and hs-cTn below the chosen threshold in the absence of ischemic changes on the ECG. Results: One thousand seventy-nine patients were recruited including 248 with AMI. H-FABP 99 % sensitivity for AMI whilst classifying 40.9 % of patients as low-risk. The combination of H-FABP < 3.9 ng/mL and hs-cTnT < 7.6 ng/L with a negative ECG maintained the same sensitivity whilst classifying 32.1 % of patients as low risk. Conclusions: In patients requiring rule-out of AMI, the addition of H-FABP to hs-cTn at presentation (in the absence of new ischaemic ECG findings) may accelerate clinical diagnostic decision making by identifying up to 40 % of such patients as low-risk for AMI on the basis of blood tests performed on presentation. If implemented this has the potential to significantly accelerate triaging of patients for early discharge from the ED

    A support vector clustering based approach for driving style classification

    Get PDF
    All drivers have their own habitual choice of driving behavior, causing variations in fuel consumption. It would be beneficial to classify these driving styles and extract the most economical and ecological driving patterns. However, driving style of each driver is not consistent and may vary within a single trip. Therefore, this paper proposes a novel technique to robustly classify driving style using the Support Vector Clustering approach, which attempts to differentiate the variations in individual's driving pattern and provides an objective driver classification. It is part of a research program aiming to replicate some humans' driving behaviors on chassis dynamometer using a robot driver. Moreover, it can potentially be used in developing more economical and personalized advanced driver assistance systems (ADAS) and humanized autonomous driving strategies. With the easily accessible on-board diagnostics (OBD) data on modern vehicles, both vehicle state and traffic information of three drivers were collected using an instrumented vehicle, which had external forward-looking radar and a monocular dashcam. For data processing, each trip data was first segmented into separate event groups. Prominent factors were then extracted by applying Principal Component Analysis (PCA) on both statistical and spectral features of all signals. Afterwards, Support Vector Clustering (SVC) was performed to classify driving style during the trip. The trained classifier was used to indicate the driving pattern variations in percentage. The validity of the proposed method was evaluated using the jerk profile, where a high correlation was found between the classification results and jerk distributions. Moreover, a positive relation between fuel consumption and driving aggressivity was also confirmed. Furthermore, it was found that weather condition, time of the day and ultimately, the driver's eagerness, can cause significant variations in driving style.</p

    The Astropy Problem

    Get PDF
    The Astropy Project (http://astropy.org) is, in its own words, "a community effort to develop a single core package for Astronomy in Python and foster interoperability between Python astronomy packages." For five years this project has been managed, written, and operated as a grassroots, self-organized, almost entirely volunteer effort while the software is used by the majority of the astronomical community. Despite this, the project has always been and remains to this day effectively unfunded. Further, contributors receive little or no formal recognition for creating and supporting what is now critical software. This paper explores the problem in detail, outlines possible solutions to correct this, and presents a few suggestions on how to address the sustainability of general purpose astronomical software
    corecore