330 research outputs found
Mode of action of annexin V (vascular anticoagulant alpha):A protein synthesized by the vessel wall
The role of extracellular vesicles during CNS development
© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)With a diverse set of neuronal and glial cell populations, Central Nervous System (CNS) has one of the most complex structures in the body. Intercellular communication is therefore highly important to coordinate cell-to-cell interactions. Besides electrical and chemical messengers, CNS cells also benefit from another communication route, what is known as extracellular vesicles, to harmonize their interactions. Extracellular Vesicles (EVs) and their subtype exosomes are membranous particles secreted by cells and contain information packaged in the form of biomolecules such as small fragments of DNA, lipids, miRNAs, mRNAs, and proteins. They are able to efficiently drive changes upon their arrival to recipient cells. EVs actively participate in all stages of CNS development by stimulating neural cell proliferation, differentiation, synaptic formation, and mediating reciprocal interactions between neurons and oligodendrocyte for myelination process. The aim of the present review is to enlighten the presence and contribution of EVs at each CNS developmental milestone.info:eu-repo/semantics/publishedVersio
Macrophage Depletion in Hypertensive Rats Accelerates Development of Cardiomyopathy
Inflammation contributes to the process of ventricular remodeling after acute myocardial injury. To investigate the role of macrophages in the chronic process of cardiac remodeling, they were selectively depleted by intravenous administration of liposomal clodronate in heart failure-prone hypertensive Ren-2 rats from the age of 7 until 13 weeks. plain liposomes were used for comparison. Liposomal clodronate treatment reduced the number of blood monocytes and decreased the number of macrophages in the myocardium. Compared to plain liposomes, liposomal clodronate treatment rapidly worsened left ventricular ejection function in hypertensive rats. Liposomal clodronate-treated Ren-2 rat hearts showed areas of myocyte loss with abundant inflammatory cell infiltration, predominantly comprising CD4 positive T lymphocytes. The current-study showed that lack of macrophages vas associated with earlier development of myocardial dysfunction in hypertensive rats. Modulation of macrophage function may be of value in the evolution of cardiomyopath
Annexin A1 treatment prevents the evolution to fibrosis of experimental nonalcoholic steatohepatitis
: Annexin A1 (AnxA1) is an important effector in the resolution of inflammation which is involved in modulating hepatic inflammation in nonalcoholic steatohepatitis (NASH). In the present study, we have investigated the possible effects of treatment with AnxA1 for counteracting the progression of experimental NASH. NASH was induced in C57BL/6 mice by feeding methionine-choline deficient (MCD) or Western diets (WDs) and the animals were treated for 4-6 weeks with human recombinant AnxA1 (hrAnxA1; 1 µg, daily IP) or saline once NASH was established. In both experimental models, treatment with hrAnxA1 improved parenchymal injury and lobular inflammation without interfering with the extension of steatosis. Furthermore, administration of hrAnxA1 significantly attenuated the hepatic expression of α1-procollagen and TGF-β1 and reduced collagen deposition, as evaluated by collagen Sirius Red staining. Flow cytometry and immunohistochemistry showed that hrAnxA1 did not affect the liver recruitment of macrophages, but strongly interfered with the formation of crown-like macrophage aggregates and reduced their capacity of producing pro-fibrogenic mediators like osteopontin (OPN) and galectin-3 (Gal-3). This effect was related to an interference with the acquisition of a specific macrophage phenotype characterized by the expression of the Triggering Receptor Expressed on Myeloid cells 2 (TREM-2), CD9 and CD206, previously associated with NASH evolution to cirrhosis. Collectively, these results indicate that, beside ameliorating hepatic inflammation, AnxA1 is specifically effective in preventing NASH-associated fibrosis by interfering with macrophage pro-fibrogenic features. Such a novel function of AnxA1 gives the rationale for the development of AnxA1 analogs for the therapeutic control of NASH evolution
Phosphatidylserine exposure by apoptotic cells:a phylogenetically conserved mechanism
Tolerance of the existence of the individual cell in multicellular organisms is mediated by the distribution of the various phospholipid species across the bilayer of the plasma membrane. This concept arises from in vitro studies, which show that cellsurface exposed phosphatidylserine on ageing erythrocytes and apoptotic leukocytes triggers elimination of these cells by phagocytosis. In contrast, blood cells are inert in this respect when this aminophospholipid is predominantly residing in the plasma membrane leaflet facing the cytoplasm. We have studied the in vivo distribution of cell surface-exposed phosphatidylserine by injecting biotinylated AnxV, a Ca2+dependent phosphatidylserine binding protein, into viabIe mouse and chick embryos and Drosophila pupae. The apparent binding of (Annexin V) to cells that were present in regions of developmental cell death and that were exhibiting the morphology which is characteristic of apoptosis indicates that phosphatidylserine exposure by apoptotic cells is a phylogenetically conserved mechanism
Comparison of the In Vivo Distribution of Four Different Annexin A5 Adducts in Rhesus Monkeys
Annexin A5 has been used for the detection of apoptotic cells, due to its ability to bind to phosphatidylserine (PS). Four different labeled Annexin A5 adducts were evaluated in rhesus monkey, with radiolabeling achieved via 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Of these adducts differing conjugation methods were employed which resulted in nonspecific radiolabeling (AxA5-I), or site-specific radiolabeling (AxA5-II). A nonbinding variant of Annexin A5 was also evaluated (AxA5-IINBV), conjugation here was site specific. The fourth adduct examined had both specific and nonspecific conjugation techniques employed (AxA5-IImDOTA). Blood clearance for each adduct was comparable, while appreciable uptake was observed in kidney, liver, and spleen. Significant differences in uptake of AxA5-I and AxA5-II were observed, as well as between AxA5-II and AxA5-IINBV. No difference between AxA5-II and AxA5-IImDOTA was observed, suggesting that conjugating DOTA nonspecifically did not affect the in vivo biodistribution of Annexin A5
Protective Aptitude of Annexin A1 in Arterial Neointima Formation in Atherosclerosis-Prone Mice-Brief Report
Objective-Restenosis as a consequence of arterial injury is aggravated by inflammatory pathways. Here, we investigate the role of the proresolving protein annexin A1 (AnxA1) in healing after wire injury. Approach and Results-Apoe(-/-) and Apoe(-/-) Anxa1(-/-) mice were subjected to wire injury while fed a high-cholesterol diet. Subsequently, localization of AnxA1 and AnxA1 plasma levels were examined. AnxA1 was found to localize within endothelial cells and macrophages in the neointima. Levels of AnxA1 in the plasma and its lesional expression negatively correlated with neointima size, and in the absence of AnxA1, neointima formation was aggravated by the accumulation and proliferation of macrophages. In contrast, reendothelialization and smooth muscle cell infiltration were not affected in Apoe(-/-) Anxa1(-/-) mice. Conclusions-AnxA1 is protective in healing after wire injury and could, therefore, be an attractive therapeutic compound to prevent from restenosis after vascular damage
Dual molecular imaging for targeting metalloproteinase activity and apoptosis in atherosclerosis: molecular imaging facilitates understanding of pathogenesis
Macrophage apoptosis and MMP activity contribute to vulnerability of atherosclerotic plaques to rupture. By employing molecular imaging techniques, we investigated if apoptosis and MMP release are interlinked.
Atherosclerosis was produced in rabbits receiving high-cholesterol diet (HC), who underwent dual radionuclide imaging with 99mTc-labeled matrix metalloproteinase inhibitor (MPI) and 111In-labeled annexin A5 (AA5) using micro-SPECT/CT. %ID/g MPI and AA5 uptake was measured, followed by histological characterization. Unmanipulated animals were used as disease controls. Correlation between MPI and AA5 uptake was undertaken and relationship confirmed in culture study of activated THP-1 monocytes.
MPI and AA5 uptake was best visualized in HC diet animals (n = 6) and reduced significantly after fluvastatin treatment (n = 4) or diet withdrawal (n = 3). %ID/g MPI (.087 ± .018%) and AA5 (.03 ± .01%) uptake was higher in HC than control (n = 6) animals (.014 ± .004%, P < .0001; .0007 ± .0002%, P < .0001), and reduced substantially after diet or statin intervention. There was a significant correlation between MPI and AA5 uptake (r = .62, P < .0001), both correlated with pathologically verified MMP-9 activity, macrophage content, and TUNEL staining. In vitro studies demonstrated MMP-9 release in culture medium from apoptotic THP-1 monocytes.
The present study suggests that apoptosis and MMP are interrelated in atherosclerotic lesions and the targeting of more than one molecular candidate is feasible by molecular imaging
Involvement of extracellular vesicle microRNA clusters in developing healthy and Rett syndrome brain organoids
Rett syndrome (RTT) is a neurodevelopmental disorder caused by de novo mutations in the MECP2 gene. Although miRNAs in extracellular vesicles (EVs) have been suggested to play an essential role in several neurological conditions, no prior study has utilized brain organoids to profile EV-derived miRNAs during normal and RTT-affected neuronal development. Here we report the spatiotemporal expression pattern of EV-derived miRNAs in region-specific forebrain organoids generated from female hiPSCs with a MeCP2:R255X mutation and the corresponding isogenic control. EV miRNA and protein expression profiles were characterized at day 0, day 13, day 40, and day 75. Several members of the hsa-miR-302/367 cluster were identified as having a time-dependent expression profile with RTT-specific alterations at the latest developmental stage. Moreover, the miRNA species of the chromosome 14 miRNA cluster (C14MC) exhibited strong upregulation in RTT forebrain organoids irrespective of their spatiotemporal location. Together, our results suggest essential roles of the C14MC and hsa-miR-302/367 clusters in EVs during normal and RTT-associated neurodevelopment, displaying promising prospects as biomarkers for monitoring RTT progression. Graphical Abstract: (Figure presented.)</p
- …
