41 research outputs found

    Self-efficacy enhanced in a cross-cultural context through an initiative in under-resourced schools in KwaZulu-Natal, South Africa

    Get PDF
    This paper discusses the Khanyisa Programme, an initiative in KwaZulu-Natal, South Africa, where learners from under-resourced schools are supported by teachers and high achievers in Grade 11 and 12 from a previously advantaged state school under apartheid. A qualitative, evaluative study was undertaken to identify key elements in the ongoing success of the programme and collect participant suggestions for improvement. The findings, discussed within the framework of self-efficacy theory, identified enormous gains by Khanyisa learners, leading to vastly improved career prospects

    Gene Ontology annotations and resources.

    Get PDF
    The Gene Ontology (GO) Consortium (GOC, http://www.geneontology.org) is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies. Over the past year, the GOC has implemented several processes to increase the quantity, quality and specificity of GO annotations. First, the number of manual, literature-based annotations has grown at an increasing rate. Second, as a result of a new 'phylogenetic annotation' process, manually reviewed, homology-based annotations are becoming available for a broad range of species. Third, the quality of GO annotations has been improved through a streamlined process for, and automated quality checks of, GO annotations deposited by different annotation groups. Fourth, the consistency and correctness of the ontology itself has increased by using automated reasoning tools. Finally, the GO has been expanded not only to cover new areas of biology through focused interaction with experts, but also to capture greater specificity in all areas of the ontology using tools for adding new combinatorial terms. The GOC works closely with other ontology developers to support integrated use of terminologies. The GOC supports its user community through the use of e-mail lists, social media and web-based resources

    Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm

    Get PDF
    KEY MESSAGE: Genome-wide association analysis in tropical and subtropical maize germplasm revealedthatMLND resistance is influenced by multiple genomic regions with small to medium effects. ABSTRACT: The maize lethal necrosis disease (MLND) caused by synergistic interaction of Maize chlorotic mottle virus and Sugarcane mosaic virus, and has emerged as a serious threat to maize production in eastern Africa since 2011. Our objective was to gain insights into the genetic architecture underlying the resistance to MLND by genome-wide association study (GWAS) and genomic selection. We used two association mapping (AM) panels comprising a total of 615 diverse tropical/subtropical maize inbred lines. All the lines were evaluated against MLND under artificial inoculation. Both the panels were genotyped using genotyping-by-sequencing. Phenotypic variation for MLND resistance was significant and heritability was moderately high in both the panels. Few promising lines with high resistance to MLND were identified to be used as potential donors. GWAS revealed 24 SNPs that were significantly associated (P < 3 × 10(−5)) with MLND resistance. These SNPs are located within or adjacent to 20 putative candidate genes that are associated with plant disease resistance. Ridge regression best linear unbiased prediction with five-fold cross-validation revealed higher prediction accuracy for IMAS-AM panel (0.56) over DTMA-AM (0.36) panel. The prediction accuracy for both within and across panels is promising; inclusion of MLND resistance associated SNPs into the prediction model further improved the accuracy. Overall, the study revealed that resistance to MLND is controlled by multiple loci with small to medium effects and the SNPs identified by GWAS can be used as potential candidates in MLND resistance breeding program. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00122-015-2559-0) contains supplementary material, which is available to authorized users
    corecore