2,473 research outputs found

    Unchanged content of oxidative enzymes in fast-twitch muscle fibers and V˙O2 kinetics after intensified training in trained cyclists.

    Get PDF
    PublishedJournal ArticleThe present study examined if high intensity training (HIT) could increase the expression of oxidative enzymes in fast-twitch muscle fibers causing a faster oxygen uptake (V˙O2) response during intense (INT), but not moderate (MOD), exercise and reduce the V˙O2 slow component and muscle metabolic perturbation during INT. Pulmonary V˙O2 kinetics was determined in eight trained male cyclists (V˙O2-max: 59 ± 4 (means ± SD) mL min(-1) kg(-1)) during MOD (205 ± 12 W ~65% V˙O2-max) and INT (286 ± 17 W ~85% V˙O2-max) exercise before and after a 7-week HIT period (30-sec sprints and 4-min intervals) with a 50% reduction in volume. Both before and after HIT the content in fast-twitch fibers of CS (P < 0.05) and COX-4 (P < 0.01) was lower, whereas PFK was higher (P < 0.001) than in slow-twitch fibers. Content of CS, COX-4, and PFK in homogenate and fast-twitch fibers was unchanged with HIT. Maximal activity (μmol g DW(-1) min(-1)) of CS (56 ± 8 post-HIT vs. 59 ± 10 pre-HIT), HAD (27 ± 6 vs. 29 ± 3) and PFK (340 ± 69 vs. 318 ± 105) and the capillary to fiber ratio (2.30 ± 0.16 vs. 2.38 ± 0.20) was unaltered following HIT. V˙O2 kinetics was unchanged with HIT and the speed of the primary response did not differ between MOD and INT. Muscle creatine phosphate was lower (42 ± 15 vs. 66 ± 17 mmol kg DW(-1)) and muscle lactate was higher (40 ± 18 vs. 14 ± 5 mmol kg DW(-1)) at 6 min of INT (P < 0.05) after compared to before HIT. A period of intensified training with a volume reduction did not increase the content of oxidative enzymes in fast-twitch fibers, and did not change V˙O2 kinetics.The study was supported by Team Danmark (Danish Elite Sport Organization)

    Auxetic regions in large deformations of periodic frameworks

    Get PDF
    In materials science, auxetic behavior refers to lateral widening upon stretching. We investigate the problem of finding domains of auxeticity in global deformation spaces of periodic frameworks. Case studies include planar periodic mechanisms constructed from quadrilaterals with diagonals as periods and other frameworks with two vertex orbits. We relate several geometric and kinematic descriptions.Comment: Presented at the International Conference on "Interdisciplinary Applications of Kinematics" (IAK18), Lima, Peru, March 201

    Geodesic motion in the space-time of a cosmic string

    Full text link
    We study the geodesic equation in the space-time of an Abelian-Higgs string and discuss the motion of massless and massive test particles. The geodesics can be classified according to the particles energy, angular momentum and linear momentum along the string axis. We observe that bound orbits of massive particles are only possible if the Higgs boson mass is smaller than the gauge boson mass, while massless particles always move on escape orbits. Moreover, neither massive nor massless particles can ever reach the string axis for non-vanishing angular momentum. We also discuss the dependence of light deflection by a cosmic string as well as the perihelion shift of bound orbits of massive particles on the ratio between Higgs and gauge boson mass and the ratio between symmetry breaking scale and Planck mass, respectively.Comment: 20 pages including 14 figures; v2: references added, discussion on null geodesics extended, numerical results adde

    Giant Anharmonic Phonon Scattering in PbTe

    Full text link
    Understanding the microscopic processes affecting the bulk thermal conductivity is crucial to develop more efficient thermoelectric materials. PbTe is currently one of the leading thermoelectric materials, largely thanks to its low thermal conductivity. However, the origin of this low thermal conductivity in a simple rocksalt structure has so far been elusive. Using a combination of inelastic neutron scattering measurements and first-principles computations of the phonons, we identify a strong anharmonic coupling between the ferroelectric transverse optic (TO) mode and the longitudinal acoustic (LA) modes in PbTe. This interaction extends over a large portion of reciprocal space, and directly affects the heat-carrying LA phonons. The LA-TO anharmonic coupling is likely to play a central role in explaining the low thermal conductivity of PbTe. The present results provide a microscopic picture of why many good thermoelectric materials are found near a lattice instability of the ferroelectric type

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Relational Contracts and Organizational Capabilities

    Get PDF
    A large literature identifies unique organizational capabilities as a potent source of competitive advantage, yet our knowledge of why capabilities fail to diffuse more rapidly—particularly in situations in which competitors apparently have strong incentives to adopt them and a well-developed understanding of how they work—remains incomplete. In this paper we suggest that competitively significant capabilities often rest on managerial practices that in turn rely on relational contracts (i.e., informal agreements sustained by the shadow of the future). We argue that one of the reasons these practices may be difficult to copy is that effective relational contracts must solve the twin problems of credibility and clarity and that although credibility might, in principle, be instantly acquired, clarity may take time to develop and may interact with credibility in complex ways so that relational contracts may often be difficult to build

    Инфекционная составляющая и иммунопатология при хронических воспалительных заболеваниях слизистой оболочки гастродуоденальной области

    Get PDF
    Выявлено коинфицирование слизистой оболочки желудочно−кишечного тракта Helicobacter pylori и вирусами группы герпеса у больных хроническим гастритом, язвенной болезнью желудка и двенадцатиперстной кишки. Проведена оценка общих и специфических иммунных реакций организма на указанные инфекционные агенты. Обнаруженные изменения в клеточном и гуморальном звене иммунитета могут свидетельствовать об обусловленном ими системном иммунопатологическом процессе.Co−infection of the gastrointestinal mucosa with Helicobacter pylori and herpes viruses in patients with chronic gastritis, gastric and duodenal ulcer was revealed. General and specific immune reactions of the organism to the above agents were evaluated. The revealed changes in the cellular and humoral immunity can suggest systemic immunopathological process

    Long gamma-ray bursts and core-collapse supernovae have different environments

    Get PDF
    When massive stars exhaust their fuel they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the long gamma-ray bursts are far more concentrated on the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.Comment: 27 pages, 4 figures, submitted to Nature on 22 August 2005, revised 9 February 2006, online publication 10 May 2006. Supplementary material referred to in the text can be found at http://www.stsci.edu/~fruchter/GRB/locations/supplement.pdf . This new version contains minor changes to match the final published versio

    Planck intermediate results. XLI. A map of lensing-induced B-modes

    Get PDF
    The secondary cosmic microwave background (CMB) BB-modes stem from the post-decoupling distortion of the polarization EE-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced BB-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB BB-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization EE-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced an all-sky template map of the lensing-induced BB-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) BB-mode map can be used to measure the lensing BB-mode power spectrum at multipoles up to 20002000. In particular, when cross-correlating with the BB-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced BB-mode power spectrum measurement at a significance level of 12σ12\,\sigma, which agrees with the theoretical expectation derived from the Planck best-fit Λ\LambdaCDM model. This unique nearly all-sky secondary BB-mode template, which includes the lensing-induced information from intermediate to small (10100010\lesssim \ell\lesssim 1000) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial BB-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB BB-modes.Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map is part of the PR2-2015 Cosmology Products; available as Lensing Products in the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and described in the 'Explanatory Supplement' https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_ma

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit
    corecore