3,448 research outputs found
Kinetic Characterisation of a Single Chain Antibody against the Hormone Abscisic Acid: Comparison with Its Parental Monoclonal
A single-chain Fv fragment antibody (scFv) specific for the plant hormone abscisic acid (ABA) has been expressed in the bacterium Escherichia coli as a fusion protein. The kinetics of ABA binding have been measured using surface plasmon resonance spectrometry (BIAcore 2000) using surface and solution assays. Care was taken to calculate the concentration of active protein in each sample using initial rate measurements under conditions of partial mass transport limitation. The fusion product, parental monoclonal antibody and the free scFv all have low nanomolar affinity constants, but there is a lower dissociation rate constant for the parental monoclonal resulting in a three-fold greater affinity. Analogue specificity was tested and structure-activity binding preferences measured. The biologically-active (+)-ABA enantiomer is recognised with an affinity three orders of magnitude higher than the inactive (-)-ABA. Metabolites of ABA including phaseic acid, dihydrophaseic acid and deoxy-ABA have affinities over 100-fold lower than that for (+)-ABA. These properties of the scFv make it suitable as a sensor domain in bioreporters specific for the naturally occurring form of ABA
Prospects for terahertz imaging the human skin cancer with the help of gold-nanoparticles-based terahertz-to-infrared converter
The design is suggested, and possible operation parameters are discussed, of
an instrument to inspect a skin cancer tumour in the terahertz (THz) range,
transferring the image into the infrared (IR) and making it visible with the
help of standard IR camera. The central element of the device is the THz-to-IR
converter, a Teflon or silicon film matrix with embedded 8.5 nm diameter gold
nanoparticles. The use of external THz source for irradiating the biological
tissue sample is presumed. The converter's temporal characteristics enable its
performance in a real-time scale. The details of design suited for the
operation in transmission mode (in vitro) or on the human skin in reflection
mode {in vivo) are specified.Comment: To be published in the proceedings of the FANEM2018 workshop - Minsk,
3-5 June 201
Conformally rescaled spacetimes and Hawking radiation
We study various derivations of Hawking radiation in conformally rescaled
metrics. We focus on two important properties, the location of the horizon
under a conformal transformation and its associated temperature. We find that
the production of Hawking radiation cannot be associated in all cases to the
trapping horizon because its location is not invariant under a conformal
transformation. We also find evidence that the temperature of the Hawking
radiation should transform simply under a conformal transformation, being
invariant for asymptotic observers in the limit that the conformal
transformation factor is unity at their location.Comment: 22 pages, version submitted to journa
Parametric hazard rate models for long-term sickness absence
PURPOSE: In research on the time to onset of sickness absence and the duration of sickness absence episodes, Cox proportional hazard models are in common use. However, parametric models are to be preferred when time in itself is considered as independent variable. This study compares parametric hazard rate models for the onset of long-term sickness absence and return to work. METHOD: Prospective cohort study on sickness absence with four follow-up years of 53,830 employees working in the private sector in the Netherlands. The time to onset of long-term (>6 weeks) sickness absence and return to work were modelled by parametric hazard rate models. RESULTS: The exponential parametric model with a constant hazard rate most accurately described the time to onset of long-term sickness absence. Gompertz-Makeham models with monotonically declining hazard rates best described return to work. CONCLUSIONS: Parametric models offer more possibilities than commonly used models for time-dependent processes as sickness absence and return to work. However, the advantages of parametric models above Cox models apply mainly for return to work and less for onset of long-term sickness absence
A mesocosm experiment investigating the effects of substratum quality and wave exposure on the survival of fish eggs
In a mesocosm experiment, the attachment of bream (Abramis brama) eggs to spawning substrata with and without periphytic biofilm coverage and their subsequent survival with and without low-intensity wave exposure were investigated. Egg attachment was reduced by 73% on spawning substrata with a natural periphytic biofilm, compared to clean substrata. Overall, this initial difference in egg numbers persisted until hatching. The difference in egg numbers was even increased in the wave treatment, while it was reduced in the no-wave control treatment. Exposure to a low-intensity wave regime affected egg development between the two biofilm treatments differently. Waves enhanced egg survival on substrata without a biofilm but reduced the survival of eggs on substrata with biofilm coverage. In the treatment combining biofilm-covered substrata and waves, no attached eggs survived until hatching. In all treatments, more than 75% of the eggs became detached from the spawning substrata during the egg incubation period, an
Particle creation rate for dynamical black holes
We present the particle creation probability rate around a general black hole
as an outcome of quantum fluctuations. Using the uncertainty principle for
these fluctuation, we derive a new ultraviolet frequency cutoff for the
radiation spectrum of a dynamical black hole. Using this frequency cutoff, we
define the probability creation rate function for such black holes. We consider
a dynamical Vaidya model, and calculate the probability creation rate for this
case when its horizon is in a slowly evolving phase. Our results show that one
can expect the usual Hawking radiation emission process in the case of a
dynamical black hole when it has a slowly evolving horizon. Moreover,
calculating the probability rate for a dynamical black hole gives a measure of
when Hawking radiation can be killed off by an incoming flux of matter or
radiation. Our result strictly suggests that we have to revise the Hawking
radiation expectation for primordial black holes that have grown substantially
since they were created in the early universe. We also infer that this
frequency cut off can be a parameter that shows the primordial black hole
growth at the emission moment.Comment: 10 pages, 1 figure. The paper was rewritten in more clear
presentation and one more appendix is adde
Graphene plasmonics
Two rich and vibrant fields of investigation, graphene physics and
plasmonics, strongly overlap. Not only does graphene possess intrinsic plasmons
that are tunable and adjustable, but a combination of graphene with noble-metal
nanostructures promises a variety of exciting applications for conventional
plasmonics. The versatility of graphene means that graphene-based plasmonics
may enable the manufacture of novel optical devices working in different
frequency ranges, from terahertz to the visible, with extremely high speed, low
driving voltage, low power consumption and compact sizes. Here we review the
field emerging at the intersection of graphene physics and plasmonics.Comment: Review article; 12 pages, 6 figures, 99 references (final version
available only at publisher's web site
The pseudogap: friend or foe of high Tc?
Although nineteen years have passed since the discovery of high temperature
superconductivity, there is still no consensus on its physical origin. This is
in large part because of a lack of understanding of the state of matter out of
which the superconductivity arises. In optimally and underdoped materials, this
state exhibits a pseudogap at temperatures large compared to the
superconducting transition temperature. Although discovered only three years
after the pioneering work of Bednorz and Muller, the physical origin of this
pseudogap behavior and whether it constitutes a distinct phase of matter is
still shrouded in mystery. In the summer of 2004, a band of physicists gathered
for five weeks at the Aspen Center for Physics to discuss the pseudogap. In
this perspective, we would like to summarize some of the results presented
there and discuss its importance in the context of strongly correlated electron
systems.Comment: expanded version, 20 pages, 11 figures, to be published, Advances in
Physic
Antiferromagnetic Order Induced by an Applied Magnetic Field in a High-Temperature Superconductor
One view of the cuprate high-transition temperature (high-Tc) superconductors
is that they are conventional superconductors where the pairing occurs between
weakly interacting quasiparticles, which stand in one-to-one correspondence
with the electrons in ordinary metals - although the theory has to be pushed to
its limit. An alternative view is that the electrons organize into collective
textures (e.g. charge and spin stripes) which cannot be mapped onto the
electrons in ordinary metals. The phase diagram, a complex function of various
parameters (temperature, doping and magnetic field), should then be approached
using quantum field theories of objects such as textures and strings, rather
than point-like electrons. In an external magnetic field, magnetic flux
penetrates type-II superconductors via vortices, each carrying one flux
quantum. The vortices form lattices of resistive material embedded in the
non-resistive superconductor and can reveal the nature of the ground state -
e.g. a conventional metal or an ordered, striped phase - which would have
appeared had superconductivity not intervened. Knowledge of this ground state
clearly provides the most appropriate starting point for a pairing theory. Here
we report that for one high-Tc superconductor, the applied field which imposes
the vortex lattice, also induces antiferromagnetic order. Ordinary
quasiparticle pictures cannot account for the nearly field-independent
antiferromagnetic transition temperature revealed by our measurements
Interaction Between Convection and Pulsation
This article reviews our current understanding of modelling convection
dynamics in stars. Several semi-analytical time-dependent convection models
have been proposed for pulsating one-dimensional stellar structures with
different formulations for how the convective turbulent velocity field couples
with the global stellar oscillations. In this review we put emphasis on two,
widely used, time-dependent convection formulations for estimating pulsation
properties in one-dimensional stellar models. Applications to pulsating stars
are presented with results for oscillation properties, such as the effects of
convection dynamics on the oscillation frequencies, or the stability of
pulsation modes, in classical pulsators and in stars supporting solar-type
oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages,
14 figure
- …
