44 research outputs found

    Future sea level contribution from Antarcticainferred from CMIP5 model forcing and itsdependence on precipitation ansatz

    Get PDF
    Various observational estimates indicate growing mass loss at Antarctica's margins but also heavier precipitation across the continent. In the future, heavier precipitation fallen on Antarctica will counteract any stronger iceberg discharge and increased basal melting of floating ice shelves driven by a warming ocean. Here, we use from nine CMIP5 models future projections, ranging from strong mitigation efforts to business-as-usual, to run an ensemble of ice-sheet simulations. We test, how the precipitation boundary condition determines Antarctica's sea-level contribution. The spatial and temporal varying climate forcings drive ice-sheet simulations. Hence, our ensemble inherits all spatial and temporal climate patterns, which is in contrast to a spatial mean forcing. Regardless of the applied boundary condition and forcing, some areas will lose ice in the future, such as the glaciers from the West Antarctic Ice Sheet draining into the Amundsen Sea. In general the simulated ice-sheet thickness grows in a broad marginal strip, where incoming storms deliver topographically controlled precipitation. This strip shows the largest ice thickness differences between the applied precipitation boundary conditions too. On average Antarctica's ice mass shrinks for all future scenarios if the precipitation is scaled by the spatial temperature anomalies coming from the CMIP5 models. In this approach, we use the relative precipitation increment per degree warming as invariant scaling constant. In contrast, Antarctica gains mass in our simulations if we apply the simulated precipitation anomalies of the CMIP5 models directly. Here, the scaling factors show a distinct spatial pattern across Antarctica. Furthermore, the diagnosed mean scaling across all considered climate forcings is larger than the values deduced from ice cores. In general, the scaling is higher across the East Antarctic Ice Sheet, lower across the West Antarctic Ice Sheet, and lowest around the Siple Coast. The latter is located on the east side of the Ross Ice Shelf

    Analysis of the surface mass balance for deglacial climate simulations

    Get PDF
    A realistic simulation of the surface mass balance (SMB) is essential for simulating past and future ice-sheet changes. As most state-of-the-art Earth system models (ESMs) are not capable of realistically representing processes determining the SMB, most studies of the SMB are limited to observations and regional climate models and cover the last century and near future only. Using transient simulations with the Max Planck Institute ESM in combination with an energy balance model (EBM), we extend previous research and study changes in the SMB and equilibrium line altitude (ELA) for the Northern Hemisphere ice sheets throughout the last deglaciation. The EBM is used to calculate and downscale the SMB onto a higher spatial resolution than the native ESM grid and allows for the resolution of SMB variations due to topographic gradients not resolved by the ESM. An evaluation for historical climate conditions (1980–2010) shows that derived SMBs compare well with SMBs from regional modeling. Throughout the deglaciation, changes in insolation dominate the Greenland SMB. The increase in insolation and associated warming early in the deglaciation result in an ELA and SMB increase. The SMB increase is caused by compensating effects of melt and accumulation: the warming of the atmosphere leads to an increase in melt at low elevations along the ice-sheet margins, while it results in an increase in accumulation at higher levels as a warmer atmosphere precipitates more. After 13 ka, the increase in melt begins to dominate, and the SMB decreases. The decline in Northern Hemisphere summer insolation after 9 ka leads to an increasing SMB and decreasing ELA. Superimposed on these long-term changes are centennial-scale episodes of abrupt SMB and ELA decreases related to slowdowns of the Atlantic meridional overturning circulation (AMOC) that lead to a cooling over most of the Northern Hemisphere

    On the reduced sensitivity of the Atlantic overturning to Greenland ice sheet melting in projections: a multi-model assessment

    Get PDF
    Large uncertainties exist concerning the impact of Greenland ice sheet melting on the Atlantic meridional overturning circulation (AMOC) in the future, partly due to different sensitivity of the AMOC to freshwater input in the North Atlantic among climate models. Here we analyse five projections from different coupled ocean–atmosphere models with an additional 0.1 Sv (1 Sv = 10 6 m3/s) of freshwater released around Greenland between 2050 and 2089. We find on average a further weakening of the AMOC at 26°N of 1.1 ± 0.6 Sv representing a 27 ± 14% supplementary weakening in 2080–2089, as compared to the weakening relative to 2006–2015 due to the effect of the external forcing only. This weakening is lower than what has been found with the same ensemble of models in an identical experimen - tal set-up but under recent historical climate conditions. This lower sensitivity in a warmer world is explained by two main factors. First, a tendency of decoupling is detected between the surface and the deep ocean caused by an increased thermal stratification in the North Atlantic under the effect of global warming. This induces a shoaling of ocean deep ventilation through convection hence ventilating only intermediate levels. The second important effect concerns the so-called Canary Current freshwater leakage; a process by which additionally released fresh water in the North Atlantic leaks along the Canary Current and escapes the convection zones towards the subtropical area. This leakage is increasing in a warming climate, which is a consequence of decreasing gyres asymmetry due to changes in Ekman rumping. We suggest that these modifications are related with the northward shift of the jet stream in a warmer world. For these two reasons the AMOC is less susceptible to freshwater perturbations (near the deep water formation sides) in the North Atlantic as compared to the recent historical climate conditions. Finally, we propose a bilinear model that accounts for the two former processes to give a conceptual explanation about the decreasing AMOC sensitivity due to freshwater input. Within the limit of this bilinear model, we find that 62 ± 8% of the reduction in sensitivity is related with the changes in gyre asymmetry and freshwater leakage and 38 ± 8% is due to the reduction in deep ocean ventilation associated with the increased stratification in the North Atlantic

    AMAP 2017. Adaptation Actions for a Changing Arctic: Perspectives from the Baffin Bay/Davis Strait Region

    Get PDF

    Temporal variations and trends of CFC11 and CFC12 surface and deep water saturations in Antarctic marginal seas: Results of a regional ocean circulation model

    Get PDF
    The knowledge of chlorofluorocarbon (CFC11, CFC12) concentrations in ocean surface waters is a prerequisite for deriving formation rates of, and water mass ages in, deep and bottom waters on the basis of CFC data. In the Antarctic coastal region, surface-layer data are sparse in time and space, primarily due to the limited accessibility of the region. To help filling this gap, we carried out CFC simulations using a regional ocean general circulation model (OGCM) for the Southern Ocean, which includes the ocean-ice shelf interaction. The simulated surface layer saturations, i.e. the actual surface concentrations relative to solubility-equilibrium values, are verified against available observations. The CFC input fluxes driven by concentration gradients between atmosphere and ocean are controlled mainly by the sea ice cover and sea surface temperature and salinity. However, no uniform explanation exists for the controlling mechanisms. Here we present simulated long-term trends and seasonal variations of surface-layer saturation at Southern Ocean deep and bottom water formation sites and other key regions, and we discuss differences between these regions. The amplitudes of the seasonal saturation cycle range from 22% to 66% and their long-term trends amount to rises of 0.1%/year to 0.9%/year. The seasonal saturation maximum lags the ice cover minimum by 2 months. We show that ignoring the trends and using instead the saturations actually observed can lead to systematic errors in deduced inventory-based formation rates by up to 10% and suggest an erroneous decline with time

    DMI Report 21-23 A prototype of the coupled EC-Earth-PISM model comprising the Antarctic Ice Sheet

    No full text
    A prototype of a coupled climate-ice sheet model has been developed by the work package 1.1.3 "IskappeANT." The coupled system comprises the climate model EC-Earth and the Parallel Ice Sheet Model (PISM), representing Antarctica. Since the direct implementation of the involved processes, such as the implementation of ice shelf geometries, the ocean-ice shelf interaction, or the computation of the surface mass balance, would exceed the funding period of one year, we exploit state-of-the-art parameterizations. However, the robust system is open for enhancements in consecutive steps afterward and allows exploring scientific frontiers. The coupled system is one of the first state-of-the-art global climate models where the climate system interacts with the Antarctic ice sheet and its fringing ice shelves. This ambitious package includes these tasks: infrastructure to run the Parallel Ice Sheet Model (PISM) version 1.1.4 and version 1.2, setup and configuration of PISM to simulate Antarctica as a standalone model, coupling infrastructure, and first coupled simulations. This document describes the design decisions of the coupling. It presents the analysis of the preindustrial climate state in the Southern Ocean and across Antarctica. These states are subject to sufficiently large biases suggesting anomaly coupling between the climate model and the ice sheet model as an adequate coupling strategy

    Brief communication: Surface energy balance differences over Greenland between ERA5 and ERA-Interim

    No full text
    Abstract. We compare the main atmospheric drivers of the melt season over the Greenland Ice Sheet (GrIS) in ERA5 and ERA-Interim (ERAI) in their overlapping period 1979–2018. In summer, ERA5 differs significantly from ERAI, especially in the melt regions: averaged over the lower parts of the GrIS, mean near-surface temperature is 1 K lower, while the mean downward shortwave radiation at the surface is on average 15 Wm−2 higher than in ERAI. Comparison with observational weather station data shows a significant warm bias in ERAI and for ERA5 a significant positive bias in downward shortwave radiation. Consequently, methods that previously estimated the GrIS surface mass balance from the ERAI surface energy balance need to be carefully recalibrated before converting to ERA5 forcing. </jats:p

    Brief communication: A submarine wall protecting the Amundsen Sea intensifies melting of neighboring ice shelves

    No full text
    Abstract. Disintegration of ice shelves in the Amundsen Sea has the potential to cause sea level rise by inducing an acceleration of grounded ice streams. Moore et al. (2018) proposed that using a submarine wall to block the penetration of warm water into the ice shelf cavities could reduce this risk. We use a global sea ice-ocean model to show that a wall shielding the Amundsen Sea below 350 m depth successfully suppresses the inflow of warm water and reduces ice shelf melting. However, the warm water gets redirected towards neighboring ice shelves, which reduces the effectiveness of the wall. </jats:p
    corecore