477 research outputs found
Growth of the mussel Mytilus edulis L. in the Wadden Sea affected by tidal emergence and barnacle epibionts
Facilitative effects of introduced Pacific oysters on native macroalgae are limited by a secondary invader, the seaweed Sargassum muticum
Invasion trajectory of Pacific oysters in the northern Wadden Sea
Invasion trajectories of introduced alien species usually begin with a long establishment phase of low abundance, often followed by exponential expansion and subsequent adjustment phases. We review the first 26 years of feral Pacific oysters Crassostrea gigas around the island of Sylt in the Wadden Sea (North Sea, NE Atlantic), and reveal causal conditions for the invasion phases. Sea-based oyster farming with repeated introductions made establishment of feral oysters almost inevitable. Beds of mussels Mytilus edulis on mud flats offered firm substrate for attachment and ideal growth conditions around low tide level. C. gigas mapped on to the spatial pattern of mussel beds. During the 1990s, cold summers often hampered recruitment and abundances remained low but oyster longevity secured persistence. Since the 2000s, summers were often warmer and recruitment more regular. Young oysters attached to adult oysters and abundances of >1000 m−2 were achieved. However, peak abundance was followed by recruitment failure. The population declined and then was
also struck by ice winters causing high mortality. Recovery was fast (>2000 m−2) but then recruitment failed again. We expect adjustment phase will proceed with mean abundance of about 1000 m−2 but density-dependent (e.g., diseases) and density-independent (e.g., weather anomalies) events causing strong fluctuations. With continued global warming, feral C. gigas at the current invasion fronts in British estuaries and Scandinavian fjords may show similar adjustment trajectories as observed in the northern Wadden Sea, and also other marine introductions may follow the invasion trajectory of Pacific oysters
Selective byssus attachment behavior of mytilid mussels from hard- and soft-bottom coastal systems
Biological invasions and host–parasite coevolution: different coevolutionary trajectories along separate parasite invasion fronts
Host–parasite coevolution has rarely been observed in natural systems. Its study often relies on microparasitic infections introducing a potential bias in the estimation of the evolutionary change of host and parasite traits. Using biological invasions as a tool to study host–parasite coevolution in nature can overcome these biases. We demonstrate this with a cross-infection experiment in the invasive macroparasite <i>Mytilicola intestinalis</i> and its bivalve host, the blue mussel <i>Mytilus edulis</i>. The invasion history of the parasite is well known for the southeastern North Sea and is characterised by two separate invasion fronts that reached opposite ends of the Wadden Sea (i.e. Texel, The Netherlands and Sylt, Germany) in a similar time frame. The species’ natural history thus makes this invasion an ideal natural experiment to study host–parasite coevolution in nature. We infected hosts from Texel, Sylt and Kiel (Baltic Sea, where the parasite is absent) with parasites from Texel and Sylt, to form sympatric, allopatric and naïve infestation combinations, respectively. We measured infection rate, host condition and parasite growth to show that sympatric host–parasite combinations diverged in terms of pre- and post-infection traits within <100 generations since their introduction. Texel parasites were more infective and more efficient at exploiting the host’s resources. Hosts on Texel, on the other hand, evolved resistance to infection, whereas hosts on Sylt may have evolved tolerance. This illustrates that different coevolutionary trajectories can evolve along separate invasion fronts of the parasite, highlighting the use of biological invasions in studies of host–parasite coevolution in nature
Introduced marine ecosystem engineers change native biotic habitats but not necessarily associated species interactions
Introduced bioengineering organisms may fundamentally change native coastal ecosystems by modifying existing benthic habitat structures and thereby habitat-specific species interactions. The introduction of the Pacific oyster Magallana gigas into the sedimentary coastal area of the south-eastern North Sea and its preferred settlement on native blue mussel shells caused a large-scale shift from monospecific Mytilus edulis beds to current mixed reefs of mussels and oysters. To investigate whether the newly developed biotic habitat affects the occurrence of associated native key organisms and their ecological functions, we studied the long-term density trajectory of the gastropod Littorina littorea and its grazing activity on barnacles attached to Pacific oyster reefs in the northern Wadden Sea. We found no significant correlation between oyster and snail densities on blue mussel beds in the last two decades, which spans a time-period from the beginning of Pacific oyster establishment to today's oyster dominance. A manipulative field experiment revealed that snail density significantly affects the recruitment success of barnacles Semibalanus balanoides on oyster shells with the highest number of barnacle recruits at snail exclusion. Thus, density and grazing activity of the snail L. littorea may control barnacle population dynamics on epibenthic bivalve beds in the Wadden Sea. This interspecific interaction was already known for blue mussel beds before the oyster invasion and, therefore, we conclude that despite the strong modifications that non-native ecosystem engineers cause in native biotic habitats, the ecological functions of associated key species can remain unchanged
Soft-bottom tidepools within mixed reefs of native mussels and introduced oysters – refuge for associated species and parasites?
The introduction of Pacific oysters to the sedimentary south-eastern North Sea coast and their establishment on intertidal native blue mussel beds has caused the development of mixed reefs of mussels and oysters with extensive tidepools. Tidepools have been intensively studied at rocky shores where they show community structures, which usually differ from that of the surrounding emerging substrates. Tidepools at sedimentary coasts, however, have received less attention. We compared the community structure and species interactions inside and outside tidepools in oyster reefs by determining densities of snails, barnacles and amphipods. Snail densities were similar in and outside tidepools. Barnacle coverage on bivalve shells, however, was lower inside tidepools, which may be caused by higher predation pressure and increased snail grazing under permanently submerged conditions, as was revealed by field and laboratory experiments. Additionally, we studied the occurrence of copepod and trematode parasites in blue mussels inside and outside tidepools. Prevalence and intensity of parasitic copepods was higher in mussels inside tidepools. Trematode parasites, by contrast, showed a lower intensity in mussels inside tidepools. This can be explained by high amphipod densities found inside tidepools because trematode larvae represent a food source of amphipods. Our study suggests that the community structure of oyster reefs within tidepools is not a submerged equivalent to that of intertidal reefs. As their counterparts at rocky shores, they show their own species distribution patterns with particular species interactions and only provide refuge for specific species such as parasitic copepods
- …
