40 research outputs found

    Reachability Analysis on Timed Graph Transformation Systems

    Get PDF
    In recent years, software increasingly exhibits self-* properties like selfoptimization or self-healing. Such properties require reconfiguration at runtime in order to react to changing environments or detected defects. A reconfiguration might add or delete components as well as it might change the communication topology of the system. Considering communication protocols between an arbitrary number of participants, reconfiguration and state-based protocol behavior are no longer independent from each other and need to be verified based on a common formalism. Additionally, such protocols often contain timing constraints to model real-time properties. These are of integral importance for the safety of the modeled system and thus need to be considered during the verification of the protocol. In current approaches either reconfigurations or timing constraints are not considered. Existing approaches for the verification of timed graph transformation systems lack important constructs needed for the verification of state-based real-time protocol behaviors. As a first step towards a solution to this problem, we introduced Timed Story Driven Modeling [HHH10] as a common formalism integrating state-based real-time protocol behaviors and system reconfigurations based on graph transformations. In this paper, we introduce a framework allowing to perform reachability analysis based on Timed Story Driven Modeling. The framework allows to compute the reachable timed graph transition system based on an initial graph and a set of timed transformation and invariant rules

    Verification and simulation of self-adaptive mechatronic systems

    Get PDF
    Selbstadaptive mechatronische Systeme passen ihr Verhalten über die Rekonfiguration ihrer Softwarearchitektur zur Laufzeit automatisch an eine sich verändernde Umwelt an. Dies ermöglicht insbesondere die Bildung von sogenannten „Systems-of-Systems“ zur Laufzeit, in denen mehrere eigenständige Systeme unter Verwendung nachrichtenbasierter Kommunikationsprotokolle miteinander kollaborieren. Dabei müssen die einzelnen Systeme in der Regel harten Echtzeitanforderungen genügen und sind häufig sicherheitskritisch, d.h. jegliche Fehler im funktionalen oder zeitlichen Verhalten können Menschenleben gefährden. Die besondere Kritikalität dieser Systeme bedingt, dass eine Rekonfiguration der Softwarearchitektur nicht zu einem gefährdenden Verhalten oder einer Verletzung der Echtzeitanforderungen führt. Durch die Anwendung testbasierter Verfahren alleine kann die Korrektheit und damit auch die Sicherheit des mechatronischen Systems nicht garantiert werden. Existierende Ansätze für eine modellgetriebene Entwicklung und Analyse mechatronischer Systeme ermöglichen entweder die Analyse von Echtzeitanforderungen oder die Analyse von Rekonfigurationen der Softwarearchitektur zur Laufzeit jedoch nicht beides. Im Rahmen dieser Arbeit wird eine Kombination aus konstruktiven und analytischen Verfahren vorgestellt. Sie kann von Softwareentwicklern im Rahmen einer modellgetriebenen Softwareentwicklungsmethode eingesetzt werden, um die Korrektheit der Software eines selbstadaptiven mechatronischen Systems zu verifizieren. Die Neuartigkeit des vorgestellten Konzepts liegt in der gezielten Kombination formaler Verifikationsverfahren mit simulations-basierten Testverfahren mit dem Ziel, einen skalierbaren Ansatz für die Analyse der Software zu erhalten. Die Beiträge der Arbeit wurden auf Basis des RailCab Systems und zweier Fallstudien evaluiert.Self-adaptive mechatronic systems automatically adapt their behavior to a changing environment by reconfiguring their software architecture at runtime. In particular, this includes to dynamically form systems of systems at runtime, where several systems collaborate with each other using message-based communication protocols. Often, these systems are safety-critical and need to satisfy hard real-time constraints, i.e., any (timing) error in their behavior may put lives at risk. As a consequence, the software of a mechatronic system needs to meet high quality standards. In particular, it needs to be guaranteed that reconfigurations of the software architecture do not lead to an unsafe behavior or a violation of the real-time constraints. Testing alone cannot prove the correctness and thereby the safety of the mechatronic system. Existing approaches for model-driven development and analysis of mechatronic systems either provide support for analyzing real-time constraints or for analyzing reconfigurations of the software architecture, but none of the existing approaches supports both. In this thesis, we present a combination of constructive and analytical techniques that can be used by software engineers as part of a model-driven software engineering method for assuring the correctness of the software of a self-adaptive mechatronic system. As a key novelty, our approach combines formal verification and simulation-based testing for achieving a scalable analysis of the system's software. In addition, we explicitly separate the specification and verification of functional behavior and reconfiguration behavior for further improving the scalability of the verification. We evaluated all of our contributions based on the RailCab system and conducted two case studies that demonstrate the viability of our techniques.Tag der Verteidigung: 30.07.2015Paderborn, Univ., Diss., 201

    From Evaluation to Verification: Towards Task-oriented Relevance Metricsfor Pedestrian Detection in Safety-critical Domains

    Get PDF
    Whenever a visual perception system is employed in safety-critical applications such as automated driving, a thorough, task-oriented experimental evaluation is necessary to guarantee safe system behavior. While most standard evaluation methods in computer vision provide a good comparability on benchmarks, they tend to fall short on assessing the system performance that is actually relevant for the given task. In our work, we consider pedestrian detection as a highly relevant perception task, and we argue that standard measures such as Intersection over Union (IoU) give insufficient results, mainly because they are insensitive to important physical cues including distance, speed, and direction of motion. Therefore, we investigate so-called relevance metrics, where specific domain knowledge is exploited to obtain a task-oriented performance measure focusing on distance in this initial work. Our experimental setup is based on the CARLA simulator and allows a controlled evaluation of the impact of that domain knowledge. Our first results indicate a linear decrease of the IoU related to the pedestrians' distance, leading to the proposal of a first relevance metric that is also conditioned on the distance

    Making the Case for Safety of Machine Learning in Highly Automated Driving

    Full text link

    Automata-based refinement checking for real-time systems

    No full text
    Model-driven development of real-time safety-critical systems requires to support refinement of behavioral model specifications using, for example, timed simulation or timed bisimulation. Such refinements, if defined properly, guarantee that (safety and liveness) properties, which have been verified for an abstract model, still hold for the refined model. In this paper, we propose an automatic selection algorithm selecting the most suitable refinement definition concerning the type of model specification applied and the properties to be verified. By extending the idea of test automata construction for refinement checking, our approach also guarantees that a refined model is constructed correctly concerning the selected and applied refinement definition. We illustrate the application of our approach by an example of an advanced railway transportation system
    corecore