28 research outputs found
Situation Awareness for Recommender Systems
One major shortcoming of traditional recommender systems is their inability to adjust to users' short-term preferences resulting from varying situation-specific factors. To address this, we propose the notion of situation-aware recommender systems, which are supposed to autonomously determine the users' current situation based on a multitude of contextual side information and generate truly personalized recommendations. In particular, we develop a situation awareness model for recommender systems, include it in a situation-aware recommendation process, and derive generic design steps for the design of situation-aware recommender systems. The feasibility of these concepts is demonstrated by directly employing them for the development and implementation of a music recommender system for everyday situations. Moreover, their meaningfulness is shown by means of an empirical user study. The outcomes of the evaluation indicate a significant increase in user satisfaction compared to traditional (i.e. non-situation-aware) recommendations
State of the Art of Reputation-Enhanced Recommender Systems
Recommender systems are pivotal components of modern Internet platforms and constitute a well-established research field. By now, research has resulted in highly sophisticated recommender algorithms whose further optimization often yields only marginal improvements. This paper goes beyond the commonly dominating focus on optimizing algorithms and instead follows the idea of enhancing recommender systems with reputation data. Since the concept of reputation-enhanced recommender systems has attracted considerable attention in recent years, the main aim of the paper is to provide a comprehensive survey of the approaches proposed so far. To this end, existing work is identified by means of a systematic literature review and classified according to seven carefully considered dimensions. In addition, the resulting structured analysis of the state of the art serves as a basis for the deduction and discussion of several future research directions
Reputation-Enhanced Recommender Systems (Best Paper Award)
Recommender systems are pivotal components of modern Internet platforms and constitute a well-established research field. By now, research has resulted in highly sophisticated recommender algorithms whose further optimization often yields only marginal improvements. This paper goes beyond the commonly dominating focus on optimizing algorithms and instead follows the idea of enhancing recommender systems with reputation data. Since the concept of reputation-enhanced recommender systems has attracted considerable attention in recent years, the main aim of the paper is to provide a comprehensive survey of the approaches proposed so far. To this end, existing work are identified by means of a systematic literature review and classified according to carefully considered dimensions. In addition, the resulting structured analysis of the state of the art serves as a basis for the deduction of future research directions
Taxonomy for Social Network Data Types from the Viewpoint of Privacy and User Control
The growing relevance and usage intensity of Online Social Networks (OSNs) along with the accumulation of a large amount of user data has led to privacy concerns among researchers and end users. Despite a large body of research addressing OSN privacy issues, little differentiation of data
types on social network sites is made and a generally accepted classification and terminology for such data is missing, hence leading to confusion in related discussions. This paper proposes a taxonomy for data types on OSNs based on a thorough literature analysis and a conceptualization of typical OSN user activities. It aims at clarifying discussions among researchers, benefiting comparisons of data types within and across OSNs and at educating the end user about characteristics and implications of OSN data types. The taxonomy is evaluated by applying it to four major OSNs
Dynamic Trust-based Recertifications in Identity and Access Management
Security compliance has become an important topic for medium- and large-sized companies in the recent years. In order to fulfill all requirements legally imposed, high quality identity management – particularly with respect to correct and consistent access control – is essential. In this context, the concept of recertification has proven itself to maintain the quality and correctness of access rights over a long period of time. In this paper, we show how the traditional recertification concept can be notably enhanced through involving the notion of trust. We thereto propose a trust-based recertification model and demonstrate its benefits by means of a realistic use case. Our dynamic concept can help to better spread the recertification overhead compared to the traditional approach with fixed periods. Furthermore, it aids in the identification of risky employees
Trust and Reputation Modelling for Tourism Recommendations Supported by Crowdsourcing
Tourism crowdsourcing platforms have a profound influence
on the tourist behaviour particularly in terms of travel planning. Not
only they hold the opinions shared by other tourists concerning tourism
resources, but, with the help of recommendation engines, are the pillar
of personalised resource recommendation. However, since prospective
tourists are unaware of the trustworthiness or reputation of crowd publishers,
they are in fact taking a leap of faith when then rely on the
crowd wisdom. In this paper, we argue that modelling publisher Trust &
Reputation improves the quality of the tourism recommendations supported
by crowdsourced information. Therefore, we present a tourism
recommendation system which integrates: (i) user profiling using the
multi-criteria ratings; (ii) k-Nearest Neighbours (k-NN) prediction of the
user ratings; (iii) Trust & Reputation modelling; and (iv) incremental
model update, i.e., providing near real-time recommendations. In terms
of contributions, this paper provides two different Trust & Reputation
approaches: (i) general reputation employing the pairwise trust values
using all users; and (ii) neighbour-based reputation employing the pairwise
trust values of the common neighbours. The proposed method was
experimented using crowdsourced datasets from Expedia and TripAdvisor
platforms.info:eu-repo/semantics/publishedVersio
Interactive Visualization of Recommender Systems Data
Recommender systems provide a valuable mechanism to address the information overload problem by reducing a data set to the items that may be interesting for a particular user. While the quality of recommendations has notably improved in the recent years, the complex algorithms in use lead to high non-transparency for the end user. We propose the usage of interactive visualizations for presenting recommendations. By involving the user in the information reduction process, the quality of recommendations could be enhanced whilst keeping the system’s transparency. This work gives first insights by analyzing recommender systems data and matching them to suitable visualization and interaction techniques. The findings are illustrated by means of an example scenario based on a typical real-world setting
