1,059 research outputs found
In vivo anomalous diffusion and weak ergodicity breaking of lipid granules
Combining extensive single particle tracking microscopy data of endogenous
lipid granules in living fission yeast cells with analytical results we show
evidence for anomalous diffusion and weak ergodicity breaking. Namely we
demonstrate that at short times the granules perform subdiffusion according to
the laws of continuous time random walk theory. The associated violation of
ergodicity leads to a characteristic turnover between two scaling regimes of
the time averaged mean squared displacement. At longer times the granule motion
is consistent with fractional Brownian motion.Comment: 4 pages, 4 figures, REVTeX. Supplementary Material. Physical Review
Letters, at pres
International Guillain-Barré Syndrome Outcome Study (IGOS): protocol of a prospective observational cohort study on clinical and biological predictors of disease course and outcome in Guillain-Barré syndrome
Guillain-Barré syndrome (GBS) is an acute polyradiculoneuropathy with a highly variable clinical presentation, course, and outcome. The factors that determine the clinical variation of GBS are poorly understood which complicates the care and treatment of individual patients. The protocol of the ongoing International GBS Outcome Study (IGOS), a prospective, observational, multi-centre cohort study that aims to identify the clinical and biological determinants and predictors of disease onset, subtype, course and outcome of GBS is presented here. Patients fulfilling the diagnostic criteria for GBS, regardless of age, disease severity, variant forms, or treatment, can participate if included within two weeks after onset of weakness. Information about demography, preceding infections, clinical features, diagnostic findings, treatment, course and outcome is collected. In addition, cerebrospinal fluid and serial blood samples for serum and DNA is collected at standard time points. The original aim was to include at least 1000 patients with a follow-up of 1-3 years. Data are collected via a web-based data entry system and stored anonymously. IGOS started in May 2012 and by January 2017 included more than 1400 participants from 143 active centres in 19 countries across 5 continents. The IGOS data/biobank is available for research projects conducted by expertise groups focusing on specific topics including epidemiology, diagnostic criteria, clinimetrics, electrophysiology, antecedent events, antibodies, genetics, prognostic modelling, treatment effects and long-term outcome of GBS. The IGOS will help to standardize the international collection of data and biosamples for future research of GBS. ClinicalTrials.gov Identifier: NCT01582763
Critical Thinking and Transformational Learning: Using Case Studies as Narrative Frameworks for Threshold Concepts
Critical thinking is an essential component to the occupational therapy process that is a timely skill with the rapid pace of change in our healthcare system. Critical thinking exposes assumptions, biases, beliefs and points of view and challenges a shift in epistemology by asking, ‘how do we know what we believe to know?’ Case studies are a tool to engage the learner in critical thinking and are commonly employed in occupational therapy curricula. Social determinants of health (SDH) describe environmental circumstances that affect health. The authors propose that SDH, embedded in case studies, serve as a threshold concept. A threshold concept serves as a means of transformative learning and promotion of critical thinking in occupational therapy education. Social determinants of health taught through case study presentation represent the authentic complex lives of those therapists serve, bolster student critical thinking, and help to consider the multiple perspectives that may challenge long held beliefs. Qualitative content analysis of 59 case studies for SDH content across one curriculum and five semesters, revealed cases built on client factors and foundational knowledge with missed opportunity to add SDH context. Eleven guidelines for case development are proposed to foster transformational learning. Intentional instructional approaches can assist educational programs to develop the professional change agents needed to serve communities and populations with a larger goal of health equity
Patents and Industrialisation. An Historical Overview of the British Case, 1624-1907
A Report to the Strategic Advisory Board on Intellectual Property Policy (SABIP), U
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Status of Muon Collider Research and Development and Future Plans
The status of the research on muon colliders is discussed and plans are
outlined for future theoretical and experimental studies. Besides continued
work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy
collider, many studies are now concentrating on a machine near 0.1 TeV (CoM)
that could be a factory for the s-channel production of Higgs particles. We
discuss the research on the various components in such muon colliders, starting
from the proton accelerator needed to generate pions from a heavy-Z target and
proceeding through the phase rotation and decay ()
channel, muon cooling, acceleration, storage in a collider ring and the
collider detector. We also present theoretical and experimental R & D plans for
the next several years that should lead to a better understanding of the design
and feasibility issues for all of the components. This report is an update of
the progress on the R & D since the Feasibility Study of Muon Colliders
presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A.
Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics
(Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics,
Accelerators and Beam
- …
