1,836 research outputs found
Transition from accelerated to decelerated regimes in JT and CGHS cosmologies
In this work we discuss the possibility of positive-acceleration regimes, and
their transition to decelerated regimes, in two-dimensional (2D) cosmological
models. We use general relativity and the thermodynamics in a 2D space-time,
where the gas is seen as the sources of the gravitational field. An
early-Universe model is analyzed where the state equation of van der Waals is
used, replacing the usual barotropic equation. We show that this substitution
permits the simulation of a period of inflation, followed by a
negative-acceleration era. The dynamical behavior of the system follows from
the solution of the Jackiw-Teitelboim equations (JT equations) and the
energy-momentum conservation laws. In a second stage we focus the
Callan-Giddings-Harvey-Strominger model (CGHS model); here the transition from
the inflationary period to the decelerated period is also present between the
solutions, although this result depend strongly on the initial conditions used
for the dilaton field. The temporal evolution of the cosmic scale function, its
acceleration, the energy density and the hydrostatic pressure are the physical
quantities obtained in through the analysis.Comment: To appear in Europhysics Letter
Response of a catalytic reaction to periodic variation of the CO pressure: Increased CO_2 production and dynamic phase transition
We present a kinetic Monte Carlo study of the dynamical response of a
Ziff-Gulari-Barshad model for CO oxidation with CO desorption to periodic
variation of the CO presure. We use a square-wave periodic pressure variation
with parameters that can be tuned to enhance the catalytic activity. We produce
evidence that, below a critical value of the desorption rate, the driven system
undergoes a dynamic phase transition between a CO_2 productive phase and a
nonproductive one at a critical value of the period of the pressure
oscillation. At the dynamic phase transition the period-averged CO_2 production
rate is significantly increased and can be used as a dynamic order parameter.
We perform a finite-size scaling analysis that indicates the existence of
power-law singularities for the order parameter and its fluctuations, yielding
estimated critical exponent ratios and . These exponent ratios, together with theoretical symmetry
arguments and numerical data for the fourth-order cumulant associated with the
transition, give reasonable support for the hypothesis that the observed
nonequilibrium dynamic phase transition is in the same universality class as
the two-dimensional equilibrium Ising model.Comment: 18 pages, 10 figures, accepted in Physical Review
Inflationary and dark energy regimes in 2+1 dimensions
In this work we investigate the behavior of three-dimensional (3D)
cosmological models. The simulation of inflationary and dark-energy-dominated
eras are among the possible results in these 3D formulations; taking as
starting point the results obtained by Cornish and Frankel.
Motivated by those results, we investigate, first, the inflationary case
where we consider a two-constituent cosmological fluid: the scalar field
represents the hypothetical inflaton which is in gravitational interaction with
a matter/radiation contribution. For the description of an old universe, it is
possible to simulate its evolution starting with a matter dominated universe
that faces a decelerated/accelerated transition due to the presence of the
additional constituent (simulated by the scalar field or ruled by an exotic
equation of state) that plays the role of dark energy. We obtain, through
numerical analysis, the evolution in time of the scale factor, the
acceleration, the energy densities, and the hydrostatic pressure of the
constituents. The alternative scalar cosmology proposed by Cornish and Frankel
is also under investigation in this work. In this case an inflationary model
can be constructed when another non-polytropic equation of state (the van der
Waals equation) is used to simulate the behavior of an early 3D universe.Comment: Latex file, plus 9 figures. To appear in General Relativity and
Gravitatio
Energetics and Vibrational States for Hydrogen on Pt(111)
We present a combination of theoretical calculations and experiments for the
low-lying vibrational excitations of H and D atoms adsorbed on the Pt(111)
surface. The vibrational band states are calculated based on the full
three-dimensional adiabatic potential energy surface obtained from first
principles calculations. For coverages less than three quarters of a monolayer,
the observed experimental high-resolution electron peaks at 31 and 68meV are in
excellent agreement with the theoretical transitions between selected bands.
Our results convincingly demonstrate the need to go beyond the local harmonic
oscillator picture to understand the dynamics of this system.Comment: In press at Phys. Rev. Lett - to appear in April 200
Bragg Polaritons: Strong Coupling and Amplification in an Unfolded Microcavity
Periodic incorporation of quantum wells inside a one--dimensional Bragg
structure is shown to enhance coherent coupling of excitons to the
electromagnetic Bloch waves. We demonstrate strong coupling of quantum well
excitons to photonic crystal Bragg modes at the edge of the photonic bandgap,
which gives rise to mixed Bragg polariton eigenstates. The resulting Bragg
polariton branches are in good agreement with the theory and allow
demonstration of Bragg polariton parametric amplification.Comment: 4 pages, 4 figure
A leed analysis of the (2×1)H-Ni(110) structure
A monolayer of H atoms adsorbed on Ni(110) below 180 K forms a (2×1) structure. The unit cell exhibits a glide symmetry plane and contains two adsorbed atoms. Based on a quantitative comparison between experimental and calculated LEED I/V spectra using standard R-factors the following structure was derived: On the clean Ni(110) surface the separation between the first two atomic layers, d12, is contracted by 8.5%±1.5% with respect to the bulk value; those between the second and third and the third and fourth layer, d23 and d34, are expanded by 3.5%±1.5% and 1%±1.5%, respectively—in agreement with recent other results. In the presence of the H adlayer the contraction of d12 is reduced to 4.5%±1.5%, while the expansion of d23 is not affected within the limits of accuracy. The third interlayer spacing d34 returns to its bulk value. The H atoms occupy threefold-coordinated sites formed by two Ni atoms from the first layer and one Ni atom from the second layer which confirms previous more qualitative conclusions based on He diffraction and vibrational spectroscopy. The bond lengths between H and its neighbouring Ni atoms were determined to be equal, namely 1.72±0.1 Å
Beam-Normal Single Spin Asymmetry in Elastic Electron Scattering off Si and Zr
We report on a new measurement of the beam-normal single spin asymmetry
in the elastic scattering of 570 MeV transversely polarized
electrons off Si and Zr at . The
studied kinematics allow for a comprehensive comparison with former results on
C. No significant mass dependence of the beam-normal single spin
asymmetry is observed in the mass regime from C to Zr.Comment: Submitted for publication to Physics Letters
Decay of metastable phases in a model for the catalytic oxidation of CO
We study by kinetic Monte Carlo simulations the dynamic behavior of a
Ziff-Gulari-Barshad model with CO desorption for the reaction CO + O
CO on a catalytic surface. Finite-size scaling analysis of the fluctuations
and the fourth-order order-parameter cumulant show that below a critical CO
desorption rate, the model exhibits a nonequilibrium first-order phase
transition between low and high CO coverage phases. We calculate several points
on the coexistence curve. We also measure the metastable lifetimes associated
with the transition from the low CO coverage phase to the high CO coverage
phase, and {\it vice versa}. Our results indicate that the transition process
follows a mechanism very similar to the decay of metastable phases associated
with {\it equilibrium} first-order phase transitions and can be described by
the classic Kolmogorov-Johnson-Mehl-Avrami theory of phase transformation by
nucleation and growth. In the present case, the desorption parameter plays the
role of temperature, and the distance to the coexistence curve plays the role
of an external field or supersaturation. We identify two distinct regimes,
depending on whether the system is far from or close to the coexistence curve,
in which the statistical properties and the system-size dependence of the
lifetimes are different, corresponding to multidroplet or single-droplet decay,
respectively. The crossover between the two regimes approaches the coexistence
curve logarithmically with system size, analogous to the behavior of the
crossover between multidroplet and single-droplet metastable decay near an
equilibrium first-order phase transition.Comment: 27 pages, 22 figures, accepted by Physical Review
The Static and Dynamic Lattice Changes Induced by Hydrogen Adsorption on NiAl(110)
Static and dynamic changes induced by adsorption of atomic hydrogen on the
NiAl(110) lattice at 130 K have been examined as a function of adsorbate
coverage. Adsorbed hydrogen exists in three distinct phases. At low coverages
the hydrogen is itinerant because of quantum tunneling between sites and
exhibits no observable vibrational modes. Between 0.4 ML and 0.6 ML, substrate
mediated interactions produce an ordered superstructure with c(2x2) symmetry,
and at higher coverages, hydrogen exists as a disordered lattice gas. This
picture of how hydrogen interacts with NiAl(110) is developed from our data and
compared to current theoretical predictions.Comment: 36 pages, including 12 figures, 2 tables and 58 reference
- …
