1,840 research outputs found
Le gore, modalité virale du cinéma hollywoodien
À partir d’une série de films post-hollywoodiens qui font de l’irruption de l’abject un motif privilégié, cet article se propose de mettre en évidence l’existence d’une modalité « virale » qui, se propageant à partir d’un film souche (The Masque of the Red Death de Roger Corman, sorti en 1964), allait infiltrer et contaminer nombre de films à venir. Afin d’éclairer l’émergence de cette modalité, l’auteur revient dans un premier temps sur la logique socioculturelle de décontamination amenée par le puritanisme et sur les thèses développées par Jean Baudrillard sur l’apparition de virus dans un milieu aseptisé. La modalité virale est ainsi présentée comme le symptôme d’une culture qui, à force d’éliminer les « souillures », génère ses propres pathologies. Dans un deuxième temps, cette modalité virale est saisie dans sa dimension métaphorique, comme reflet des soubresauts sociopolitiques qui ébranlent l’Amérique des sixties. À partir de thèses de René Girard, l’apparition du virus dans le cadre du cinéma américain est appréhendée dans sa dimension démystificatrice. Au terme de ce travail, il s’agit de voir en quoi cette modalité peut être envisagée comme une pathologie typiquement filmique. Le film d’horreur « viral » enregistrerait, en effet, la lutte entre un virus et le corps filmique dans lequel il se développe.Through an examination of a series of post-Hollywood films whose explosion of the abject is a central concern, this article sets out to demonstrate the existence of a “viral” cinema which, developing out of a founding strain (Roger Corman’s 1964 film The Masque of the Red Death), came to infiltrate and contaminate a number of films. In order to place this cinema’s emergence in a theoretical context, the author initially examines the socio-cultural logic of decontamination driven by puritanism, and Jean Baudrillard’s theses on the appearances of viruses in asepticized environments, demonstrating how the viral is a symptom of a culture which, in the course of removing “impurities,” generates its own pathologies. The viral is then examined metaphorically, as the reflection of the socio-political upheavals of the 1960s in North America. The demystifying dimension of the emergence of the viral in American cinema is then discussed using the theses of René Girard. By the end of the essay, the viral is shown to be a typically cinematic pathology : the “viral” horror film depicts the struggle between a virus and the cinematic body in which it develops
On Ramification Filtrations and p-adic Differential Equations, II: mixed characteristic case
Let K be a complete discretely valued field of mixed characteristic (0, p)
with possibly imperfect residue field. We prove a Hasse-Arf theorem for the
arithmetic ramification filtrations on G_K, except possibly in the absolutely
unramified and non-logarithmic case, or p=2 and logarithmic case. As an
application, we obtain a Hasse-Arf theorem for filtrations on finite flat group
schemes over O_K
The Career of Lucius Cominius Vipsanius Salutaris, Procurator in Baetica
La carrière de L. Cominius Vipsanius Salutaris, procurateur de Bétique, peut être précisée par le réexamen d’une inscription d’Ilipa (CIL,
II, 1085). Présent dans la province lors de la prise de pouvoir de Septime Sévère, il apparaît comme un de ses partisans. Sa promotion comme a cognitionibus est une marque de grande confiance.
Lorsqu’il avait été procurateur en Sicile, sa carrière avait croisé soit celle de Septime Sévère, alors proconsul, soit celle de son frère Septimius
Geta également proconsul dans cette provinceThe procuratorian career of L. Cominius Vipsanius Salutaris is precisely known by the reexamination of an inscription from Ilipa
(CIL, II, 1085). He appears as a supporter in Baetica when Septimius Seuerus assumed the imperial power. The appointment as a cognitionibus is significant of great trust. As procurator in Sicily, he have met Seuerus, then proconsul, or Septimius Geta, his brother, also proconsul in this
provinc
Sur le th\'eor\`eme de l'indice des \'equations diff\'erentielles p-adiques. III
This paper works out the structure of singular points of p-adic differential
equations (i.e. differential modules over the ring of functions analytic in
some annulus with external radius 1). Surprisingly results look like in the
formal case (differential modules over a one variable power series field) but
proofs are much more involved. However, unlike in the Turritin theorem, even
after ramification, in the p-adic theory there are irreducible objects of rank
>1. The first part is devoted to the definition of p-adic slopes and to a
decomposition along p-adic slopes theorem. The case of slope 0 (p-adic analogue
of the regular singular case) was already studied in the paper with the same
title but number II [Ann. of Math. (2) 146 (1997), 345-410]. The second part
states several index existence theorems and index formulas. As a consequence,
vertices of the Newton polygon built from p-adic slopes are proved to have
integral components (analogue of the Hasse-Arf theorem). After the work of the
second author, existence of index implies finitness of p-adic
(Monsky-Washnitzer) cohomology for affine varieties over finite fields. The end
of the paper outlines the construction of a p-adic-coefficient category over
curves (over a finite field) with all needed finitness properties.
In the paper with the same title but number IV [Invent. Math. 143 (2001),
629-672], further insights are given.Comment: 73 pages, French, published versio
Diagonal Ising susceptibility: elliptic integrals, modular forms and Calabi-Yau equations
We give the exact expressions of the partial susceptibilities
and for the diagonal susceptibility of the Ising model in terms
of modular forms and Calabi-Yau ODEs, and more specifically,
and hypergeometric functions. By solving the connection problems we
analytically compute the behavior at all finite singular points for
and . We also give new results for .
We see in particular, the emergence of a remarkable order-six operator, which
is such that its symmetric square has a rational solution. These new exact
results indicate that the linear differential operators occurring in the
-fold integrals of the Ising model are not only "Derived from Geometry"
(globally nilpotent), but actually correspond to "Special Geometry"
(homomorphic to their formal adjoint). This raises the question of seeing if
these "special geometry" Ising-operators, are "special" ones, reducing, in fact
systematically, to (selected, k-balanced, ...) hypergeometric
functions, or correspond to the more general solutions of Calabi-Yau equations.Comment: 35 page
Ising n-fold integrals as diagonals of rational functions and integrality of series expansions
We show that the n-fold integrals of the magnetic susceptibility
of the Ising model, as well as various other n-fold integrals of the "Ising
class", or n-fold integrals from enumerative combinatorics, like lattice Green
functions, correspond to a distinguished class of function generalising
algebraic functions: they are actually diagonals of rational functions. As a
consequence, the power series expansions of the, analytic at x=0, solutions of
these linear differential equations "Derived From Geometry" are globally
bounded, which means that, after just one rescaling of the expansion variable,
they can be cast into series expansions with integer coefficients. We also give
several results showing that the unique analytical solution of Calabi-Yau ODEs,
and, more generally, Picard-Fuchs linear ODEs, with solutions of maximal
weights, are always diagonal of rational functions. Besides, in a more
enumerative combinatorics context, generating functions whose coefficients are
expressed in terms of nested sums of products of binomial terms can also be
shown to be diagonals of rational functions. We finally address the question of
the relations between the notion of integrality (series with integer
coefficients, or, more generally, globally bounded series) and the modularity
of ODEs.Comment: This paper is the short version of the larger (100 pages) version,
available as arXiv:1211.6031 , where all the detailed proofs are given and
where a much larger set of examples is displaye
Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: integrality versus modularity
We show that the n-fold integrals of the magnetic susceptibility
of the Ising model, as well as various other n-fold integrals of the "Ising
class", or n-fold integrals from enumerative combinatorics, like lattice Green
functions, are actually diagonals of rational functions. As a consequence, the
power series expansions of these solutions of linear differential equations
"Derived From Geometry" are globally bounded, which means that, after just one
rescaling of the expansion variable, they can be cast into series expansions
with integer coefficients. Besides, in a more enumerative combinatorics
context, we show that generating functions whose coefficients are expressed in
terms of nested sums of products of binomial terms can also be shown to be
diagonals of rational functions. We give a large set of results illustrating
the fact that the unique analytical solution of Calabi-Yau ODEs, and more
generally of MUM ODEs, is, almost always, diagonal of rational functions. We
revisit Christol's conjecture that globally bounded series of G-operators are
necessarily diagonals of rational functions. We provide a large set of examples
of globally bounded series, or series with integer coefficients, associated
with modular forms, or Hadamard product of modular forms, or associated with
Calabi-Yau ODEs, underlying the concept of modularity. We finally address the
question of the relations between the notion of integrality (series with
integer coefficients, or, more generally, globally bounded series) and the
modularity (in particular integrality of the Taylor coefficients of mirror
map), introducing new representations of Yukawa couplings.Comment: 100 page
Injured athletes find help in Bill Kauth’s healing hands
Looking after the health of varsity sports participants involves both physical and emotional support
Els negotiatores de Narbona i el vi català
La relació entre epigrafia amfòrica i epigrafia lapidària ha permès la identificació de certs personatges que sembla que hagin participat en el comerç del vi català. La seva procedència, Narbona, documenta, d'una banda, la important funció comercial d'aquesta ciutat en època d'August, però també la seva relació amb la difusió i la comercialització del vi català a França.Some names on amphoric stamps and headstones have made possible to identify some people who seem to have played a role in the trade of Catalonian wine. Their origo, Narbonne, show, not only the importance of this city in commerce in the age of Augustus, sed also its connection with distribution and trade of Catalonian wine in France
Le sanctuaire de la Combe de l'Ermitage à Collias (Gard)
International audienceLe nouvel examen d'un dossier épigraphique connu depuis longtemps et la recherche sur place de remplois nombreux dans une église médiévale permettent de mieux caractériser ce sanctuaire rural situé à moins de 20 km de Nîmes. En rapport avec une source, il est fréquenté dès le Ier s. av. J.-C. ; doté ensuite d'un portique, il reste actif jusqu'au IIe, voire au IIIe s. On y honore alors, aux côtés de Jupiter qui y joue un rôle fédérateur, plusieurs divinités indigènes dont certaines sont associées à des localités voisines
- …
