31 research outputs found
BAAD: a Biomass And Allometry Database for woody plants
Understanding how plants are constructed—i.e., how key size dimensions and the amount of mass invested in different tissues varies among individuals—is essential for modeling plant growth, carbon stocks, and energy fluxes in the terrestrial biosphere. Allocation patterns can differ through ontogeny, but also among coexisting species and among species adapted to different environments. While a variety of models dealing with biomass allocation exist, we lack a synthetic understanding of the underlying processes. This is partly due to the lack of suitable data sets for validating and parameterizing models. To that end, we present the Biomass And Allometry Database (BAAD) for woody plants. The BAAD contains 259 634 measurements collected in 176 different studies, from 21 084 individuals across 678 species. Most of these data come from existing publications. However, raw data were rarely made public at the time of publication. Thus, the BAAD contains data from different studies, transformed into standard units and variable names. The transformations were achieved using a common workflow for all raw data files. Other features that distinguish the BAAD are: (i) measurements were for individual plants rather than stand averages; (ii) individuals spanning a range of sizes were measured; (iii) plants from 0.01–100 m in height were included; and (iv) biomass was estimated directly, i.e., not indirectly via allometric equations (except in very large trees where biomass was estimated from detailed sub‐sampling). We included both wild and artificially grown plants. The data set contains the following size metrics: total leaf area; area of stem cross‐section including sapwood, heartwood, and bark; height of plant and crown base, crown area, and surface area; and the dry mass of leaf, stem, branches, sapwood, heartwood, bark, coarse roots, and fine root tissues. We also report other properties of individuals (age, leaf size, leaf mass per area, wood density, nitrogen content of leaves and wood), as well as information about the growing environment (location, light, experimental treatment, vegetation type) where available. It is our hope that making these data available will improve our ability to understand plant growth, ecosystem dynamics, and carbon cycling in the world\u27s vegetation
Des produits issus d’animaux terrestres recevant une alimentation enrichie en DHA algal peuvent contribuer à la couverture des besoins en cet acide gras essentiel
Ce travail présente une méthode permettant d’augmenter la consommation en DHA de la population sans accroitre le prélèvement halieutique, grâce à la production de produits provenant d’animaux terrestres nourris avec des aliments contenant du DHA provenant de microalgues de culture et d’ALA provenant du lin extrudé. Après une identification des espèces fixant le DHA en quantité importante (pondeuse, lapins, poulet de chair), des essais réalisés sur ces animaux (21 sur pondeuses, 9 sur lapins, 6 sur poulets de chair) ont permis de déterminer les conditions d’enrichissement en DHA ainsi que les teneurs en cet acide gras que l’on peut atteindre dans ces produits. Ainsi, avec cette alimentation, le contenu en DHA des œufs est de 200 mg / 100 grammes soit 3,5 fois plus qu’un œuf standard; pour le lapin (par exemple, la gigolette), cette valeur est également de 200 mg / 100 grammes soit 10 fois plus qu’une viande de lapin standard; et pour le poulet de chair (par exemple, le blanc) 83 mg / 100 grammes soit 4 fois plus qu’une viande de poulet de chair standard. La plupart de ces produits peuvent alléguer « Riche en oméga 3 » ou « Source d’oméga 3 ». Ces différents aliments peuvent être associés dans des menus permettant d’atteindre les recommandations d’ingestion de DHA sans augmenter la consommation de poisson, améliorant ainsi la santé de la population et celle de la planète dans le respect des habitudes alimentaires.
BAAD: a Biomass And Allometry Database for woody plants
Understanding how plants are constructed—i.e., how key size dimensions and the amount of mass invested in different tissues varies among individuals—is essential for modeling plant growth, carbon stocks, and energy fluxes in the terrestrial biosphere. Allocation patterns can differ through ontogeny, but also among coexisting species and among species adapted to different environments. While a variety of models dealing with biomass allocation exist, we lack a synthetic understanding of the underlying processes. This is partly due to the lack of suitable data sets for validating and parameterizing models. To that end, we present the Biomass And Allometry Database (BAAD) for woody plants. The BAAD contains 259 634 measurements collected in 176 different studies, from 21 084 individuals across 678 species. Most of these data come from existing publications. However, raw data were rarely made public at the time of publication. Thus, the BAAD contains data from different studies, transformed into standard units and variable names. The transformations were achieved using a common workflow for all raw data files. Other features that distinguish the BAAD are: (i) measurements were for individual plants rather than stand averages; (ii) individuals spanning a range of sizes were measured; (iii) plants from 0.01–100 m in height were included; and (iv) biomass was estimated directly, i.e., not indirectly via allometric equations (except in very large trees where biomass was estimated from detailed sub-sampling). We included both wild and artificially grown plants. The data set contains the following size metrics: total leaf area; area of stem cross-section including sapwood, heartwood, and bark; height of plant and crown base, crown area, and surface area; and the dry mass of leaf, stem, branches, sapwood, heartwood, bark, coarse roots, and fine root tissues. We also report other properties of individuals (age, leaf size, leaf mass per area, wood density, nitrogen content of leaves and wood), as well as information about the growing environment (location, light, experimental treatment, vegetation type) where available. It is our hope that making these data available will improve our ability to understand plant growth, ecosystem dynamics, and carbon cycling in the world\u27s vegetation
Dual spectral and topographic local characterization of laser induced colored stainless steel with low coherence interference microscopy
All-optical nonlinear processing of both polarization state and intensity profile for 40 Gbit/s regeneration applications
International audienceIn this paper, we report all-optical regeneration of the state of polarization of a 40-Gbit/s return-to-zero telecommunication signal as well as its temporal intensity profile and average power thanks to an easy-to-implement, all-fibered device. In particular, we experimentally demonstrate that it is possible to obtain simultaneously polarization stabilization and intensity profile regeneration of a degraded light beam thanks to the combined effects of counterpropagating four-wave mixing, self-phase modulation and normal chromatic dispersion taking place in a single segment of optical fiber. All-optical regeneration is confirmed by means of polarization and bit-error-rate measurements as well as real-time observation of the 40 Gbit/s telecommunication signal
White light interference microscopy system design
International audienceInterference microscopy is a non-destructive full-field imaging method, mainly used to measure the surface topography of different samples. In this work, two designs for improving the signal quality are described. The first consists of an original vertically orientated breadboard interferometer, in a Linnik configuration. The mechanical design of the arms allows the independent control and alignment of the coherence and the focal plane positions for optimizing fringe contrast. A low noise 16-bit camera is used to improve the sensitivity. The second interferometer is based on a Thorlabs tube system, with a Nikon Mirau Objective and a white LED, all controlled with IGOR Pro software or Labview, with the aim of being more compact, flexible and mobile. For both systems, an evaluation of the interferometric signal quality is performed, whereas the difference in lateral resolution by considering the 3D nature of the interferometric system, or only its 2D imaging abilities, is explored
All-optical simultaneous polarization attraction and intensity regeneration of a 40-Gbit/s RZ signal
International audienceWe experimentally report the dual all-optical instantaneous regeneration of both the state of polarization and the intensity profile of a 40 Gbit/s Return-to-Zero telecommunication signal by means of a unique segment fibe
Performance comparison between electrochemical and semiconductors sensors for the monitoring of O<sub>3</sub>
Abstract. As part of the Quality of Life and Urban Mobility (MouVIE) Chair, an individual mobile sensor designed as an adaptable and scalable "platform" is being developed within the LATMOS (Atmospheres Space Observations Laboratory). This sensor must contribute to answering problems related to the exposure of individuals to air pollution and their impact on health. In this context, its adaptable and scalable nature will allow the insertion of new consumer measurement components available ("low cost" micro-sensors). In this paper we present a laboratory evaluation of commercially sensors for the monitoring of ozone (O3). Two type of sensors are tested: electrochemical and semiconductors sensors. Theses sensors are tested at different temperatures, humidity and at ppb level. The voltage response and their dependence on ambiant temperature and humidity are evaluated. The time drift effect on electrochemical sensors was also evaluated during 4 months of use.
</jats:p
Young Myeloma Patients: A Systematic Review of Manifestations and Outcomes
Multiple myeloma usually affects older adults. However, younger patients constitute a significant subset as approximately 10% of cases occur in subjects younger than 50 years old. Young patients, who are underrepresented in the literature, are diagnosed during their most productive years of life, urging the need for tailored treatment approaches. This literature review aims to report recent studies specifically addressing young patients with a focus on characteristics at diagnosis, cytogenetics, treatments, and outcomes. We searched PubMed for studies involving young patients with multiple myeloma ≤50 years old. The time span of our literature review search was from 1 January 2010 to 31 December 2022. Overall, 16 retrospective studies were analyzed for this review. Young patients with multiple myeloma tend to have less advanced disease, more frequent light chain subtypes, and survive longer compared to their older counterparts. However, available studies included a limited number of patients; the newest revised international staging system was not used to stratify patients, cytogenetics varied from one cohort to another, and most patients did not receive contemporary triplet/quadruplet treatments. This review emphasizes the need to perform contemporary, large-scale retrospective studies to improve knowledge regarding the presentation and outcomes of young myeloma patients in the era of modern treatments
Performance comparison between electrochemical and semiconductors sensors for the monitoring of O<sub>3</sub>
International audienceAs part of the Quality of Life and Urban Mobility (MouVIE) Chair, an individual mobile sensor designed as an adaptable and scalable "platform" is being developed within the LATMOS (Atmospheres Space Observations Laboratory). This sensor must contribute to answering problems related to the exposure of individuals to air pollution and their impact on health. In this context, its adaptable and scalable nature will allow the insertion of new consumer measurement components available ("low cost" micro-sensors).In this paper we present a laboratory evaluation of commercially sensors for the monitoring of ozone (O3). Two type of sensors are tested: electrochemical and semiconductors sensors. Theses sensors are tested at different temperatures, humidity and at ppb level. The voltage response and their dependence on ambiant temperature and humidity are evaluated. The time drift effect on electrochemical sensors was also evaluated during 4 months of use
