670 research outputs found
Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate
Large-area and aligned copper oxide nanowires have been synthesized by thermal annealing of copper thin films deposited onto silicon substrate. The effects of the film deposition method, annealing temperature, film thickness, annealing gas, and patterning by photolithography are systematically investigated. Long and aligned nanowires can only be formed within a narrow temperature range from 400 to 500°C. Electroplated copper film is favourable for the nanowire growth, compared to that deposited by thermal evaporation. Annealing copper thin film in static air produces large-area, uniform, but not well vertically aligned nanowires along the thin film surface. Annealing copper thin film under a N2/O2 gas flow generates vertically aligned, but not very uniform nanowires on large areas. Patterning copper thin film by photolithography helps to synthesize large-area, uniform, and vertically aligned nanowires along the film surface. The copper thin film is converted into bicrystal CuO nanowires, Cu2O film, and also perhaps some CuO film after the thermal treatment in static air. Only CuO in the form of bicrystal nanowires and thin film is observed after the copper thin film is annealed under a N2/O2 gas flow
Realization of aligned three-dimensional single-crystal chromium nanostructures by thermal evaporation
Aligned three-dimensional single-crystal chromium nanostructures are fabricated onto a silicon substrate by thermal evaporation in a conventional thermal evaporator, where the incident angle of Cr vapor flux with respect to the substrate surface normal is fixed at 88°. The effects of the deposition time and incident angle on the morphology of the resulting nanostructures are investigated. The achieved Cr nanostructures are characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, and surface area measurement. This study provides a convenient way to fabricate three-dimensional single-crystal Cr nanostructures, which is suitable for batch fabrication and mass production. Finally, the same technique is employed to fabricate the nanostructures of other metals such as Ag, Au, Pd, and Ni
Nanostructured materials with highly dispersed Au–Ce0.5Zr0.5O2 nanodomains: A route to temperature stable Au catalysts?
Our strategy to inhibit Au(0) growth with temperature involves the preparation of ultrafine Au clusters that are highly dispersed and strongly interacting with a thermally stable high-surface-area substrate. Temperature-stable Au-cluster-based catalysts were successfully prepared through the controlled synthesis of 3.5 nm Ce0.5Zr0.5O2 colloidal building blocks containing tailored strongly bound Au-cluster precursors. With the objective of stabilizing these Au clusters with temperature, grain growth of Ce0.5Zr0.5O2 nanodomains was inhibited by their dispersion through Al2O3 nanodomains. High surface area Au–Ce0.5Zr0.5O2–Al2O3 nanostructured composites were thus designed highlighting the drastic effect of Au cluster dispersion on Au(0) cluster growth. High thermal stability of our Au(0)-cluster-based catalysts was shown with the surprising catalytic activity for CO conversion observed on our nanostructured materials heated to temperatures as high as 800 C for 6 h
Integrating Al with NiO nano honeycomb to realize an energetic material on silicon substrate
Nano energetic materials offer improved performance in energy release, ignition, and mechanical properties compared to their bulk or micro counterparts. In this study, the authors propose an approach to synthesize an Al/NiO based nano energetic material which is fully compatible with a microsystem. A two-dimensional NiO nano honeycomb is first realized by thermal oxidation of a Ni thin film deposited onto a silicon substrate by thermal evaporation. Then the NiO nano honeycomb is integrated with an Al that is deposited by thermal evaporation to realize an Al/NiO based nano energetic material. This approach has several advantages over previous investigations, such as lower ignition temperature, enhanced interfacial contact area, reduced impurities and Al oxidation, tailored dimensions, and easier integration into a microsystem to realize functional devices. The synthesized Al/NiO based nano energetic material is characterized by scanning electron microscopy, X-ray diffraction, differential thermal analysis, and differential scanning calorimetry
Recommended from our members
Inflation and Dark Energy from spectroscopy at z > 2
The expansion of the Universe is understood to have accelerated during two
epochs: in its very first moments during a period of Inflation and much more
recently, at z < 1, when Dark Energy is hypothesized to drive cosmic
acceleration. The undiscovered mechanisms behind these two epochs represent
some of the most important open problems in fundamental physics. The large
cosmological volume at 2 < z < 5, together with the ability to efficiently
target high- galaxies with known techniques, enables large gains in the
study of Inflation and Dark Energy. A future spectroscopic survey can test the
Gaussianity of the initial conditions up to a factor of ~50 better than our
current bounds, crossing the crucial theoretical threshold of
of order unity that separates single field and
multi-field models. Simultaneously, it can measure the fraction of Dark Energy
at the percent level up to , thus serving as an unprecedented test of
the standard model and opening up a tremendous discovery space
The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the extended Baryon Oscillation Spectroscopic Survey and from the second phase of the Apache Point Observatory Galactic Evolution Experiment
The fourth generation of the Sloan Digital Sky Survey (SDSS-IV) has been in
operation since July 2014. This paper describes the second data release from
this phase, and the fourteenth from SDSS overall (making this, Data Release
Fourteen or DR14). This release makes public data taken by SDSS-IV in its first
two years of operation (July 2014-2016). Like all previous SDSS releases, DR14
is cumulative, including the most recent reductions and calibrations of all
data taken by SDSS since the first phase began operations in 2000. New in DR14
is the first public release of data from the extended Baryon Oscillation
Spectroscopic Survey (eBOSS); the first data from the second phase of the
Apache Point Observatory (APO) Galactic Evolution Experiment (APOGEE-2),
including stellar parameter estimates from an innovative data driven machine
learning algorithm known as "The Cannon"; and almost twice as many data cubes
from the Mapping Nearby Galaxies at APO (MaNGA) survey as were in the previous
release (N = 2812 in total). This paper describes the location and format of
the publicly available data from SDSS-IV surveys. We provide references to the
important technical papers describing how these data have been taken (both
targeting and observation details) and processed for scientific use. The SDSS
website (www.sdss.org) has been updated for this release, and provides links to
data downloads, as well as tutorials and examples of data use. SDSS-IV is
planning to continue to collect astronomical data until 2020, and will be
followed by SDSS-V.Comment: SDSS-IV collaboration alphabetical author data release paper. DR14
happened on 31st July 2017. 19 pages, 5 figures. Accepted by ApJS on 28th Nov
2017 (this is the "post-print" and "post-proofs" version; minor corrections
only from v1, and most of errors found in proofs corrected
Novel genetic loci associated with hippocampal volume
The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness
Visual Pigment-Deficient Cones Survive and Mediate Visual Signaling Despite the Lack of Outer Segments
Rhodopsin and cone opsins are essential for light detection in vertebrate rods and cones, respectively. It is well established that rhodopsin is required for rod phototransduction, outer segment disk morphogenesis, and rod viability. However, the roles of cone opsins are less well understood. In this study, we adopted a loss-of-function approach to investigate the physiological roles of cone opsins in mice. We showed that cones lacking cone opsins do not form normal outer segments due to the lack of disk morphogenesis. Surprisingly, cone opsin-deficient cones survive for at least 12 mo, which is in stark contrast to the rapid rod degeneration observed in rhodopsin-deficient mice, suggesting that cone opsins are dispensable for cone viability. Although the mutant cones do not respond to light directly, they maintain a normal dark current and continue to mediate visual signaling by relaying the rod signal through rod-cone gap junctions. Our work reveals a striking difference between the role of rhodopsin and cone opsins in photoreceptor viability
Effect of Annealing Ferroelectric HfO₂ Thin Films: In Situ, High Temperature X-Ray Diffraction
The ferroelectricity in fluorite oxides has gained increasing interest due to its promising properties for multiple applications in semiconductor as well as energy devices. The structural origin of the unexpected ferroelectricity is now believed to be the formation of a non-centrosymmetric orthorhombic phase with the space group of Pca2₁. However, the factors driving the formation of the ferroelectric phase are still under debate. In this study, to understand the effect of annealing temperature, the crystallization process of doped HfO₂ thin films is analyzed using in situ, high-temperature X-ray diffraction. The change in phase fractions in a multiphase system accompanied with the unit cell volume increase during annealing could be directly observed from X-ray diffraction analyses, and the observations give an information toward understanding the effect of annealing temperature on the structure and electrical properties. A strong coupling between the structure and the electrical properties is reconfirmed from this result
Binuclear Copper(I) Complexes for Near-Infrared Light-Emitting Electrochemical Cells
Two binuclear heteroleptic CuI complexes, namely Cu−NIR1 and Cu−NIR2, bearing rigid chelating diphosphines and π-conjugated 2,5-di(pyridin-2-yl)thiazolo[5,4-d]thiazole as the bis-bidentate ligand are presented. The proposed dinuclearization strategy yields a large bathochromic shift of the emission when compared to the mononuclear counterparts (M1–M2) and enables shifting luminescence into the near-infrared (NIR) region in both solution and solid state, showing emission maximum at ca. 750 and 712 nm, respectively. The radiative process is assigned to an excited state with triplet metal-to-ligand charge transfer (3MLCT) character as demonstrated by in-depth photophysical and computational investigation. Noteworthy, X-ray analysis of the binuclear complexes unravels two interligand π–π-stacking interactions yielding a doubly locked structure that disfavours flattening of the tetrahedral coordination around the CuI centre in the excited state and maintain enhanced NIR luminescence. No such interaction is present in M1–M2. These findings prompt the successful use of Cu−NIR1 and Cu−NIR2 in NIR light-emitting electrochemical cells (LECs), which display electroluminescence maximum up to 756 nm and peak external quantum efficiency (EQE) of 0.43 %. Their suitability for the fabrication of white-emitting LECs is also demonstrated. To the best of our knowledge, these are the first examples of NIR electroluminescent devices based on earth-abundant CuI emitters
- …
