1,345 research outputs found
A study of atom localization in an optical lattice by analysis of the scattered light
We present an experimental study of a four beam optical lattice using the
light scattered by the atoms in the lattice. We use both intensity correlations
and observations of the transient behavior of the scattering when the lattice
is suddenly switched on. We compare results for 3 different configurations of
the optical lattice. We create situations in which the Lamb-Dicke effect is
negligible and show that, in contrast to what has been stated in some of the
literature, the damping rate of the 'coherent' atomic oscillations can be much
smaller than the inelastic photon scattering rate.Comment: An old pape
Valuing One's Self: Medial Prefrontal Involvement in Epistemic and Emotive Investments in Self-views.
peer reviewedRecent neuroimaging research has revealed that the medial prefrontal cortex (MPFC) is consistently engaged when people form mental representations of themselves. However, the precise function of this region in self-representation is not yet fully understood. Here, we investigate whether the MPFC contributes to epistemic and emotive investments in self-views, which are essential components of the self-concept that stabilize self-views and shape how one feels about oneself. Using functional magnetic resonance imaging, we show that the level of activity in the MPFC when people think about their personal traits (by judging trait adjectives for self-descriptiveness) depends on their investments in the particular self-view under consideration, as assessed by postscan rating scales. Furthermore, different forms of investments are associated with partly distinct medial prefrontal areas: a region of the dorsal MPFC is uniquely related to the degree of certainty with which a particular self-view is held (one's epistemic investment), whereas a region of the ventral MPFC responds specifically to the importance attached to this self-view (one's emotive investment). These findings provide new insight into the role of the MPFC in self-representation and suggest that the ventral MPFC confers degrees of value upon the particular conception of the self that people construct at a given moment
Supernovae as a probe of particle physics and cosmology
It has very recently been demonstrated by Csaki, Kaloper and Terning (CKT)
that the faintness of supernovae at high redshift can be accommodated by mixing
of a light axion with the photon in the presence of an intergalactic magnetic
field, as opposed to the usual explanation of an accelerating universe by a
dark energy component. In this paper we analyze further aspects of the CKT
mechanism and its generalizations. The CKT mechanism also passes various
cosmological constraints from the fluctuations of the CMB and the formation of
structure at large scales, without requiring an accelerating phase in the
expansion of the Universe. We investigate the statistical significance of
current supernova data for pinning down the different components of the
cosmological energy-momentum tensor and for probing physics beyond the standard
models.Comment: 17 pages, LaTeX, 4 figures; v2: typos corrected, minor changes,
references added; v3: updated figures, details regarding fits include
Semi-automated calibration method for modelling of mountain permafrost evolution in Switzerland
Permafrost is a widespread phenomenon in mountainous regions of the world such as the European Alps. Many important topics such as the future evolution of permafrost related to climate change and the detection of permafrost related to potential natural hazards sites are of major concern to our society. Numerical permafrost models are the only tools which allow for the projection of the future evolution of permafrost. Due to the complexity of the processes involved and the heterogeneity of Alpine terrain, models must be carefully calibrated, and results should be compared with observations at the site (borehole) scale. However, for large-scale applications, a site- specific model calibration for a multitude of grid points would be very time-consuming. To tackle this issue, this study presents a semi-automated calibration method using the Generalized Likelihood Uncertainty Estimation (GLUE) as implemented in a 1-D soil model (CoupModel) and applies it to six permafrost sites in the Swiss Alps. We show that this semi-automated calibration method is able to accurately reproduce the main thermal condition characteristics with some limitations at sites with unique conditions such as 3-D air or water circulation, which have to be calibrated manually. The calibration obtained was used for global and regional climate model (GCM/RCM)-based long-term climate projections under the A1B climate scenario (EU-ENSEMBLES project) specifically downscaled at each borehole site. The projection shows general permafrost degradation with thawing at 10 m, even partially reaching 20 m depth by the end of the century, but with different timing among the sites and with partly considerable uncertainties due to the spread of the applied climatic forcing
shamo: A tool for electromagnetic modelling, simulation and sensitivity analysis of the head
Accurate electromagnetic modelling of the head of a subject is of main
interest in the fields of source reconstruction and brain stimulation. Those
processes rely heavily on the quality of the model and, even though the
geometry of the tissues can be extracted from magnetic resonance images (MRI)
or computed tomography (CT), their physical properties such as the electrical
conductivity are hard to measure with non intrusive techniques. In this paper,
we propose a tool to assess the uncertainty in the model parameters as well as
compute a parametric electroencephalography (EEG) forward solution and current
distribution for transcranial direct current stimulation (tDCS).Comment: 8 pages, 5 figure
Attention Supports Verbal Short-Term Memory via Competition between Dorsal and Ventral Attention Networks
Interactions between the neural correlates of short-term memory (STM) and attention have been actively studied in the visual STM domain but much less in the verbal STM domain. Here we show that the same attention mechanisms that have been shown to shape the neural networks of visual STM also shape those of verbal STM. Based on previous research in visual STM, we contrasted the involvement of a dorsal attention network centered on the intraparietal sulcus supporting task-related attention and a ventral attention network centered on the temporoparietal junction supporting stimulus-related attention. We observed that, with increasing STM load, the dorsal attention network was activated while the ventral attention network was deactivated, especially during early maintenance. Importantly, activation in the ventral attention network increased in response to task-irrelevant stimuli briefly presented during the maintenance phase of the STM trials but only during low-load STM conditions, which were associated with the lowest levels of activity in the dorsal attention network during encoding and early maintenance. By demonstrating a trade-off between task-related and stimulus-related attention networks during verbal STM, this study highlights the dynamics of attentional processes involved in verbal ST
- …
