1,079 research outputs found

    Réflexions autour du vocabulaire grammatical dans le dictionnaire de l'Académie française

    Get PDF
    International audienceCette communication constitue une réflexion autour de la métalangue grammaticale recensée dans les huit premières éditions du Dictionnaire de l'Académie française. En s'appuyant notamment sur la question du marquage du domaine grammatical, l'étude proposée esquisse en quelque sorte les contours de l'histoire interne d'une discipline au sein de l'un des plus importants monuments de la lexicographie française

    DigR : how to model root system in its environment? 1 - the model

    Full text link
    Many models already exist through literature dealing with root system representation, among which pure structure models such as Root Typ (Pagès 2004), SimRoot (Lynch 1997), AmapSim (Jourdan 1997); diffusion PDE models (Bastian 2008; Bonneu 2009) and structure/function that are rather scarce and recent (Dupuy 2010)may be aroused. Nevertheless in these studies, root architecture modeling was not carried out at organ level including environmental influence and not designed for integration into a whole plant characterization. We propose here a multidisciplinary study on root system from field observations, architectural analysis, formal and mathematical modeling and finally software simulation. Each speciality is individually investigated through an integrative and coherent approach that leads to a generic model (DigR) and its software simulator that is designed for further integration into a global structure/function plant model. DigR model is based on three main key points: (i) independent root type identification (ii) architectural analysis and modeling of root system at plant level; (iii) root architecture setup indexed on root length. Architecture analysis (Barthelemy 2007) applied to root system (Atger 1994) leads to root type organisation for each species. Roots belonging to a particular type share dynamical and morphological characteristics. Root architectural setup consists in topological features as apical growth, lateral branching, senescence and death, and geometrical features as secondary growth and axes spatial positioning. These features are modeled in DigR through 23 parameters whose values can evolve as a function of length position along the root axes for each root type. Topology rules apical growth speed, delayed growth, death and self pruning probabilities. Branching is characterized by spacing and mixture of lateral root types. Geometry rules root diameter increase, branching and growth directions (including local deviations and global reorientation). DigR simulator provides a user interface to input parameter values specific to each species. It is integrated into the Xplo environment (Taugourdeau 2010). Its internal multi-scale memory representation is ready for dynamical 3D visualization, statistical analysis and saving to standard formats (MTG(Godin 2007), Obj,). DigR is simulated in a quasiparallel computing algorithm and may be used either as a standalone application or integrated in other simulation platforms. This will allow further implementation of functional - structural interactions during growth simulation. The software is distributed under free LGPL license and is dedicated both to biologists and modelers. Shown applications (fig. 1) mimic the diversity of root systems and emphasize the genericity of the model according to different sets of parameter values. Examples (fig. 2) prove that additional knowledge may be plugged to DigR to simulate root plasticity facing environmental constraints. Further work will be carried out to apply DigR to various species and to connect DigR to biophysical soil models (Gérard 2008; Zhang et al. 2002); to aerial part models (Barczi 2008); to ecophysiological models (Mathieu 2009, Bornhoffen 2007); and finally to mix this pure descriptive model to a PDE model that handles fine root diffuse modelling (Bonneu 2009). (Texte intégral

    Chemical Diversity of Apatites

    Get PDF
    Apatites can accommodate a large number of vacancies and afford multiple ionic substitutions determining their reactivity and biological properties. Unlike other biominerals they offer a unique adaptability to various biological functions. The diversity of apatites is essentially related to their structure and to their mode of formation. Special charge compensation mechanisms allow molecular insertions and ion substitutions and determine to some extent their solubility behaviour. Apatite formation at physiological pH involves a structured surface hydrated layer nourishing the development of apatite domains. This surface layer contains relatively mobile and exchangeable ions, and is mainly responsible for the surface properties of apatite crystals from a chemical (dissolution properties, ion exchange ability, ion insertions, molecule adsorption and insertions) and a physical (surface charge, interfacial energy) point of view. These characteristics are used by living organisms and can also be exploited in material science

    Bone mineral: update on chemical composition and structure

    Get PDF
    Bone mineral: update on chemical composition and structur

    Physico-chemical properties of nanocrystalline apatites: Implications for biominerals and biomaterials

    Get PDF
    Nanocrystalline apatites play an important role in biomineralisation and they are used as bioactive biominerals for orthopaedic applications. One of the most interesting characteristics of the nanocrystals, evidenced by spectroscopic methods, is the existence of a structured surface hydrated layer, well developed in freshly formed precipitates, which becomes progressively transformed into the more stable apatitic lattice upon ageing in aqueous media. The hydrated layer is very fragile and irreversibly altered upon drying. Several routes leading to different apatite compositions are found in biological systems. The loosely bound ions of the hydrated layer can be easily and reversibly substituted by other ions in fast aqueous ion exchange reactions. These ions can either be included in the growing stable apatite lattice during the ageing process or remain in the hydrated layer. The adsorption properties of nanocrystals appear to be strongly dependent on the composition of the hydrated layer and on ageing. The surface reactivity of the apatite nanocrystals can play a part in different biomaterials and could explain the setting reactions of biomimetic calcium phosphate cements and the possibility of obtaining adherent nanocrystalline coatings on different substrates

    Une approche historique du concept de "Nasalité"

    Get PDF
    The present paper provides a brief analysis of the lexicographical history of the concept of "nasalité".Cet article propose une brève analyse de l'histoire du concept de "nasalité" à travers la lexicographie

    Charles-Joseph Panckoucke, artisan de l'encyclopédisme français

    Get PDF
    Article présenté lors d'une réunion de l'équipe METADIF.Cet article esquisse une présentation du rôle déterminant joué par l'éditeur Charles-Joseph Panckoucke dans la diffusion du mouvement encyclopédique des Lumières

    ""E muet" et "Schwa" au XVIIIe siècle"

    Get PDF
    National audienceLa lexicographie française moderne présente les notions de Schwa et e muet comme de strictes équivalents. Ces deux unités, dans notre langue, ont-elles toujours été considérées comme décrivant les mêmes réalités ? Qu'apprenons-nous d'un regard sur les théories grammaticales françaises des siècles antérieurs

    Formation and evolution of hydrated surface layers of apatites

    Get PDF
    Nanocrystalline apatites exhibit a very fragile structured hydrated surface layer which is only observed in aqueous media. This surface layer contains mobile ionic species which can be easily exchanged with ions from the surrounding fluids. Although the precise structure of this surface layer is still unknown, it presents very specific spectroscopic characteristics. The structure of the hydrated surface layer depends on the constitutive mineral ions: ion exchanges of HPO42- ions by CO32- ions or of Ca2+ by Mg2+ ions result in a de-structuration of the hydrated layer and modifies its spectroscopic characteristics. However, the original structure can be retrieved by reverse exchange reaction. These alterations do not seem to affect the apatitic lattice. Stoichiometric apatite also shows HPO42- on their surface due to a surface hydrolysis after contact with aqueous solutions. Ion exchange is also observed and the environments of the surface carbonate ions seem analogous to that observed in nanocrystalline apatites. The formation of a hydrated layer in aqueous media appears to be a property common to apatites which has to be taken into account in their reactivity and biological behavior

    Architecture racinaire du palmier à huile : modélisation et simulation

    Full text link
    Le système racinaire du palmier à huile a été caractérisé par une analyse détaillée de son architecture et de sa dynamique d'édification. La reconnaissance de huit types racinaires, selon leur état de différenciation et leur séquence de mise en place, nous a permis d'établir les bases qualitatives d'une formalisation mathématique du fonctionnement des méristèmes racinaires. Les modèles mathématiques utilisés sont basés sur des processus stochastiques (graphes, automates, lois de probabilité). Les processus de croissance, de ramification et de mortalité des axes, ainsi que la géométrie ont été formalisés puis rassemblés dans un modèle synthétique : l'axe de référence. L'utilisation de logiciels de simulation a permis de créer des maquettes numériques tridimensionnell es dont la validation paraît satisfaisante. Ces maquettes permettent d'estimer et de localiser la biomasse racinaire, les surfaces absorbantes et le volume de sol utile pour les éléments et permettent d'envisager des perspectives plus larges par couplage à un modèle fonctionnel de la plante entière. (Résumé d'auteurs
    corecore