1,317 research outputs found
Discussion of a physical optics method and its application to absorbing smooth and slightly rough hexagonal prisms
Three different mathematical solutions of a physical optics model for far field diffraction by an aperture due to Karczewski and Wolf are discussed. Only one of them properly describes diffraction by an aperture and can, by applying Babinet's principle, be used to model diffraction by the corresponding plane obstacle, and by further approximation, diffraction by a particle. Studying absorbing scatterers allows a closer investigation of the external diffraction component because transmission is negligible. The physical optics model has been improved on two aspects: (i) To apply the diffraction model based on two-dimensional apertures more accurately to three-dimensional objects, a size parameter dependent volume obliquity factor is introduced, thus reducing the slightly overestimated side scattering computed for three-dimensional objects. (ii) To compensate simplifications in the underlying physical optics diffraction model for two-dimensional apertures [26] a size parameter dependent cross polarisation factor is implemented. It improves cross polarisation for diffraction and reflection by small particle facets. 2D patterns of P 11, –P 12/P 11 and P 22/P 11 and their azimuthal averages for slightly rough absorbing hexagonal prisms in fixed orientation are obtained and compared with results from the discrete dipole approximation. For particle orientations where shadowing is not negligible, improved phase functions are obtained by using a new method where the incident beam is divided into sub-beams with small triangular cross sections. The intersection points of the three sub-beam edges with the prism define the vertices of a triangle, which is treated by the beam tracer as an incidence-facing facet. This ensures that incident facing but shadowed crystal facets or regions thereof do not contribute to the phase functions. The method captures much of the fine detail contained in 2D scattering patterns obtained with DDA. This is important as speckle can be used for characterizing the size and roughness of small particles such as ice crystals.Peer reviewedFinal Accepted Versio
Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements
NERC, NE/E011225/1 © Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 LicenseThe knowledge of properties of ice crystals such as size, shape, concavity and roughness is critical in the context of radiative properties of ice and mixed phase clouds. Limitations of current cloud probes to measure these properties can be circumvented by acquiring two-dimensional light scattering patterns instead of particle images. Such patterns were obtained in situ for the first time using the Small Ice Detector 3 (SID-3) probe during several flights in a variety of mid-latitude mixed phase and cirrus clouds. The patterns are analyzed using several measures of pattern texture, selected to reveal the magnitude of particle roughness or complexity. The retrieved roughness is compared to values obtained from a range of well-characterized test particles in the laboratory. It is found that typical in situ roughness corresponds to that found in the rougher subset of the test particles, and sometimes even extends beyond the most extreme values found in the laboratory. In this study we do not differentiate between small-scale, fine surface roughness and large-scale crystal complexity. Instead, we argue that both can have similar manifestations in terms of light scattering properties and also similar causes. Overall, the in situ data is consistent with ice particles with highly irregular or rough surfaces being dominant. Similar magnitudes of roughness were found in growth and sublimation zones of cirrus. The roughness was found to be negatively correlated with the halo ratio, but not with other thermodynamic or microphysical properties found in situ. Slightly higher roughness was observed in cirrus forming in clean oceanic airmasses than in a continental, polluted one. Overall, the roughness and complexity is expected to lead to increased shortwave cloud reflectivity, in comparison with cirrus composed of more regular, smooth ice crystal shapes. These findings put into question suggestions that climate could be modified through aerosol seeding to reduce cirrus cover and optical depth, as the seeding may result in decreased shortwave reflectivity.Peer reviewe
Nucleosynthesis: Stellar and Solar Abundances and Atomic Data
Abundance observations indicate the presence of often surprisingly large
amounts of neutron capture (i.e., s- and r-process) elements in old Galactic
halo and globular cluster stars. These observations provide insight into the
nature of the earliest generations of stars in the Galaxy -- the progenitors of
the halo stars -- responsible for neutron-capture synthesis. Comparisons of
abundance trends can be used to understand the chemical evolution of the Galaxy
and the nature of heavy element nucleosynthesis. In addition age
determinations, based upon long-lived radioactive nuclei abundances, can now be
obtained. These stellar abundance determinations depend critically upon atomic
data. Improved laboratory transition probabilities have been recently obtained
for a number of elements. These new gf values have been used to greatly refine
the abundances of neutron-capture elemental abundances in the solar photosphere
and in very metal-poor Galactic halo stars. The newly determined stellar
abundances are surprisingly consistent with a (relative) Solar System r-process
pattern, and are also consistent with abundance predictions expected from such
neutron-capture nucleosynthesis.Comment: 8 pages, 2 figures, 1 table. To appear in the Proceedings of the NASA
Laboratory Astrophysics Workshop in Las Vegas, NV (February 2006
miR-34a-/- mice are susceptible to diet-induced obesity
Objective:
MicroRNA (miR)−34a regulates inflammatory pathways, and increased transcripts have been observed in serum and subcutaneous adipose of subjects who have obesity and type 2 diabetes. Therefore, the role of miR-34a in adipose tissue inflammation and lipid metabolism in murine diet-induced obesity was investigated.
Methods:
Wild-type (WT) and miR-34a−/− mice were fed chow or high-fat diet (HFD) for 24 weeks. WT and miR-34a−/− bone marrow-derived macrophages were cultured in vitro with macrophage colony-stimulating factor (M-CSF). Brown and white preadipocytes were cultured from the stromal vascular fraction (SVF) of intrascapular brown and epididymal white adipose tissue (eWAT), with rosiglitazone.
Results:
HFD-fed miR-34a−/− mice were significantly heavier with a greater increase in eWAT weight than WT. miR-34a−/− eWAT had a smaller adipocyte area, which significantly increased with HFD. miR-34a−/− eWAT showed basal increases in Cd36, Hmgcr, Lxrα, Pgc1α, and Fasn. miR-34a−/− intrascapular brown adipose tissue had basal reductions in c/ebpα and c/ebpβ, with in vitro miR-34a−/− white adipocytes showing increased lipid content. An F4/80high macrophage population was present in HFD miR-34a−/− eWAT, with increased IL-10 transcripts and serum IL-5 protein. Finally, miR-34a−/− bone marrow-derived macrophages showed an ablated CXCL1 response to tumor necrosis factor-α.
Conclusions:
These findings suggest a multifactorial role of miR-34a in controlling susceptibility to obesity, by regulating inflammatory and metabolic pathways
Untwisting of the DNA helix stimulates the endonuclease activity of Bacillus subtilis Nth at AP sites
Bacterial nucleoid associated proteins play a variety of roles in genome maintenance and dynamics. Their involvement in genome packaging, DNA replication and transcription are well documented but it is still unclear whether they play any specific roles in genome repair. We discovered that untwisting of the DNA double helix by bacterial non-specific DNA binding proteins stimulates the activity of a repair endonuclease of the Nth/MutY family involved in abasic site removal during base excision repair. The essential Bacillus subtilis primosomal gene dnaD, coding for a protein with DNA-untwisting activity, is in the same operon with nth and the promoter activity of this operon is transiently stimulated by H2O2. Consequently, dnaD mRNA levels persist high upon treatment with H2O2 compared to the reduced mRNA levels of the other essential primosomal genes dnaB and dnaI, suggesting that DnaD may play an important role in DNA repair in addition to its essential role in replication initiation. Homologous Nth repair endonucleases are found in nearly all organisms, including humans. Our data have wider implications for DNA repair as they suggest that genome associated proteins that alter the superhelicity of the DNA indirectly facilitate base excision repair mediated by repair endonucleases of the Nth/MutY family
Affinity and dose of TCR engagement yield proportional enhancer and gene activity in CD4+ T cells.
Affinity and dose of T cell receptor (TCR) interaction with antigens govern the magnitude of CD4+ T cell responses, but questions remain regarding the quantitative translation of TCR engagement into downstream signals. We find that while the response of mouse CD4+ T cells to antigenic stimulation is bimodal, activated cells exhibit analog responses proportional to signal strength. Gene expression output reflects TCR signal strength, providing a signature of T cell activation. Expression changes rely on a pre-established enhancer landscape and quantitative acetylation at AP-1 binding sites. Finally, we show that graded expression of activation genes depends on ERK pathway activation, suggesting that an ERK-AP-1 axis plays an important role in translating TCR signal strength into proportional activation of enhancers and genes essential for T cell function
HST Observations of Heavy Elements in Metal-Poor Galactic Halo Stars
We present new abundance determinations of neutron-capture elements Ge, Zr,
Os, Ir, and Pt in a sample of 11 metal-poor (-3.1 <= [Fe/H] <= -1.6) Galactic
halo giant stars, based on Hubble Space Telescope UV and Keck I optical
high-resolution spectroscopy. The stellar sample is dominated by r-process-rich
stars such as the well-studied CS 22892-052 and bd+173248, but also includes
the r-process-poor, bright giant HD 122563. Our results demonstrate that
abundances of the 3rd r-process peak elements Os, Ir and Pt in these metal-poor
halo stars are very well-correlated among themselves, and with the abundances
of the canonical r-process element Eu (determined in other studies), thus
arguing for a common origin or site for r-process nucleosynthesis of heavier
(Z>56) elements. However, the large (and correlated) scatters of
[Eu,Os,Ir,Pt/Fe] suggests that the heaviest neutron-capture r-process elements
are not formed in all supernovae. In contrast, the Ge abundances of all program
stars track their Fe abundances, very well. An explosive process on iron-peak
nuclei (e.g., the alpha-rich freeze-out in supernovae), rather than neutron
capture, appears to have been the dominant synthesis mechanism for this element
at low metallicities -- Ge abundances seem completely uncorrelated with Eu.Comment: 35 pages, 5 tables, 7 figures; To appear in the Astrophysical Journa
The Magnetic Fields of Classical T Tauri Stars
We report new magnetic field measurements for 14 classical T Tauri stars
(CTTSs). We combine these data with one previous field determination in order
to compare our observed field strengths with the field strengths predicted by
magnetospheric accretion models. We use literature data on the stellar mass,
radius, rotation period, and disk accretion rate to predict the field strength
that should be present on each of our stars according to these magnetospheric
accretion models. We show that our measured field values do not correlate with
the field strengths predicted by simple magnetospheric accretion theory. We
also use our field strength measurements and literature X-ray luminosity data
to test a recent relationship expressing X-ray luminosity as a function of
surface magnetic flux derived from various solar feature and main sequence star
measurements. We find that the T Tauri stars we have observed have weaker than
expected X-ray emission by over an order of magnitude on average using this
relationship. We suggest the cause for this is actually a result of the very
strong fields on these stars which decreases the efficiency with which gas
motions in the photosphere can tangle magnetic flux tubes in the corona.Comment: 25 pages, 5 figure
The Rise of the s-Process in the Galaxy
From newly-obtained high-resolution, high signal-to-noise ratio spectra the
abundances of the elements La and Eu have been determined over the stellar
metallicity range -3<[Fe/H]<+0.3 in 159 giant and dwarf stars. Lanthanum is
predominantly made by the s-process in the solar system, while Eu owes most of
its solar system abundance to the r-process. The changing ratio of these
elements in stars over a wide metallicity range traces the changing
contributions of these two processes to the Galactic abundance mix. Large
s-process abundances can be the result of mass transfer from very evolved
stars, so to identify these cases, we also report carbon abundances in our
metal-poor stars. Results indicate that the s-process may be active as early as
[Fe/H]=-2.6, alalthough we also find that some stars as metal-rich as [Fe/H]=-1
show no strong indication of s-process enrichment. There is a significant
spread in the level of s-process enrichment even at solar metallicity.Comment: 64 pages, 15 figures; ApJ 2004 in pres
- …
