1,731 research outputs found

    The Extreme Hosts of Extreme Supernovae

    Get PDF
    We use GALEX ultraviolet (UV) and optical integrated photometry of the hosts of 17 luminous supernovae (LSNe, having peak M_V 100 M_☉), by appearing in low-SFR hosts, are potential tests for theories of the initial mass function that limit the maximum mass of a star based on the SFR

    Vortex pairing in two-dimensional Bose gases

    Get PDF
    Recent experiments on ultracold Bose gases in two dimensions have provided evidence for the existence of the Berezinskii-Kosterlitz-Thouless (BKT) phase via analysis of the interference between two independent systems. In this work we study the two-dimensional quantum degenerate Bose gas at finite temperature using the projected Gross-Pitaevskii equation classical field method. While this describes the highly occupied modes of the gas below a momentum cutoff, we have developed a method to incorporate the higher momentum states in our model. We concentrate on finite-sized homogeneous systems in order to simplify the analysis of the vortex pairing. We determine the dependence of the condensate fraction on temperature and compare this to the calculated superfluid fraction. By measuring the first order correlation function we determine the boundary of the Bose-Einstein condensate and BKT phases, and find it is consistent with the superfluid fraction decreasing to zero. We reveal the characteristic unbinding of vortex pairs above the BKT transition via a coarse-graining procedure. Finally, we model the procedure used in experiments to infer system correlations [Hadzibabic et al., Nature 441, 1118 (2006)], and quantify its level of agreement with directly calculated in situ correlation functions.Comment: published versio

    Alternative fidelity measure for quantum states

    Get PDF
    We propose an alternative fidelity measure (namely, a measure of the degree of similarity) between quantum states and benchmark it against a number of properties of the standard Uhlmann-Jozsa fidelity. This measure is a simple function of the linear entropy and the Hilbert-Schmidt inner product between the given states and is thus, in comparison, not as computationally demanding. It also features several remarkable properties such as being jointly concave and satisfying all of "Jozsa's axioms". The trade-off, however, is that it is supermultiplicative and does not behave monotonically under quantum operations. In addition, new metrics for the space of density matrices are identified and the joint concavity of the Uhlmann-Jozsa fidelity for qubit states is established.Comment: 12 pages, 3 figures. v2 includes minor changes, new references and new numerical results (Sec. IV

    The Extreme Hosts of Extreme Supernovae

    Full text link
    We use GALEX ultraviolet (UV) and optical integrated photometry of the hosts of seventeen luminous supernovae (LSNe, having peak M_V < -21) and compare them to a sample of 26,000 galaxies from a cross-match between the SDSS DR4 spectral catalog and GALEX interim release 1.1. We place the LSNe hosts on the galaxy NUV-r versus M_r color magnitude diagram (CMD) with the larger sample to illustrate how extreme they are. The LSN hosts appear to favor low-density regions of the galaxy CMD falling on the blue edge of the blue cloud toward the low luminosity end. From the UV-optical photometry, we estimate the star formation history of the LSN hosts. The hosts have moderately low star formation rates (SFRs) and low stellar masses (M_*) resulting in high specific star formation rates (sSFR). Compared with the larger sample, the LSN hosts occupy low-density regions of a diagram plotting sSFR versus M_* in the area having higher sSFR and lower M_*. This preference for low M_*, high sSFR hosts implies the LSNe are produced by an effect having to do with their local environment. The correlation of mass with metallicity suggests that perhaps wind-driven mass loss is the factor that prevents LSNe from arising in higher-mass, higher-metallicity hosts. The massive progenitors of the LSNe (>100 M_sun), by appearing in low-SFR hosts, are potential tests for theories of the initial mass function that limit the maximum mass of a star based on the SFR.Comment: 8 pages, 3 figures, 2 tables, accepted to ApJ, amended references and updated SN designation

    Indicators to assess the functionality of clubfoot clinics in low-resource settings: a Delphi consensus approach and pilot study

    Get PDF
    BACKGROUND: This study aims to determine the indicators for assessing the functionality of clubfoot clinics in a low-resource setting. METHODS: The Delphi method was employed with experienced clubfoot practitioners in Africa to rate the importance of indicators of a good clubfoot clinic. The consistency among the participants was determined with the intraclass correlation coefficient. Indicators that achieved strong agreement (mean≥9 [SD <1.5]) were included in the final consensus definition. Based on the final consensus definition, a set of questions was developed to form the Functionality Assessment Clubfoot Clinic Tool (FACT). The FACT was used between February and July 2017 to assess the functionality of clinics in the Zimbabwe clubfoot programme. RESULTS: A set of 10 indicators that includes components of five of the six building blocks of a health system-leadership, human resources, essential medical equipment, health information systems and service delivery-was produced. The most common needs identified in Zimbabwe clubfoot clinics were a standard treatment protocol, a process for surgical referrals and a process to monitor dropout of patients. CONCLUSIONS: Practitioners had good consistency in rating indicators. The consensus definition includes components of the World Health Organization building blocks of health systems. Useful information was obtained on how to improve the services in the Zimbabwe clubfoot programme

    The Star Formation Law at Low Surface Density

    Get PDF
    We investigate the nature of the star formation law at low gas surface densities using a sample of 19 low surface brightness (LSB) galaxies with existing H I maps in the literature, UV imaging from the Galaxy Evolution Explorer satellite, and optical images from the Sloan Digital Sky Survey. All of the LSB galaxies have (NUV – r) colors similar to those for higher surface brightness star-forming galaxies of similar luminosity indicating that their average star formation histories are not very different. Based upon four LSB galaxies with both UV and far-infrared (FIR) data, we find FIR/UV ratios significantly less than 1, implying low amounts of internal UV extinction in LSB galaxies. We use the UV images and H I maps to measure the star formation rate (SFR) and hydrogen gas surface density within the same region for all the galaxies. The LSB galaxy star formation rate surface densities lie below the extrapolation of the power law fit to the SFR surface density as a function of the total gas density for higher surface brightness galaxies. Although there is more scatter, the LSB galaxies also lie below a second version of the star formation law in which the SFR surface density is correlated with the gas density divided by the orbital time in the disk. The downturn seen in both star formation laws is consistent with theoretical models that predict lower star formation efficiencies in LSB galaxies due to the declining molecular fraction with decreasing density

    Author Correction: Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases.

    Get PDF
    Emmanuelle Souzeau, who contributed to analysis of data, was inadvertently omitted from the author list in the originally published version of this Article. This has now been corrected in both the PDF and HTML versions of the Article

    All clinically-relevant blood components transmit prion disease following a single blood transfusion: a sheep model of vCJD

    Get PDF
    Variant CJD (vCJD) is an incurable, infectious human disease, likely arising from the consumption of BSE-contaminated meat products. Whilst the epidemic appears to be waning, there is much concern that vCJD infection may be perpetuated in humans by the transfusion of contaminated blood products. Since 2004, several cases of transfusion-associated vCJD transmission have been reported and linked to blood collected from pre-clinically affected donors. Using an animal model in which the disease manifested resembles that of humans affected with vCJD, we examined which blood components used in human medicine are likely to pose the greatest risk of transmitting vCJD via transfusion. We collected two full units of blood from BSE-infected donor animals during the pre-clinical phase of infection. Using methods employed by transfusion services we prepared red cell concentrates, plasma and platelets units (including leucoreduced equivalents). Following transfusion, we showed that all components contain sufficient levels of infectivity to cause disease following only a single transfusion and also that leucoreduction did not prevent disease transmission. These data suggest that all blood components are vectors for prion disease transmission, and highlight the importance of multiple control measures to minimise the risk of human to human transmission of vCJD by blood transfusion

    Mergers, AGN, and 'Normal' Galaxies: Contributions to the Distribution of Star Formation Rates and Infrared Luminosity Functions

    Full text link
    We use a novel method to predict the contribution of normal star-forming galaxies, merger-induced bursts, and obscured AGN, to IR luminosity functions (LFs) and global SFR densities. We use empirical halo occupation constraints to populate halos with galaxies and determine the distribution of normal and merging galaxies. Each system can then be associated with high-resolution hydrodynamic simulations. We predict the distribution of observed luminosities and SFRs, from different galaxy classes, as a function of redshift from z=0-6. We provide fitting functions for the predicted LFs, quantify the uncertainties, and compare with observations. At all redshifts, 'normal' galaxies dominate the LF at moderate luminosities ~L* (the 'knee'). Merger-induced bursts increasingly dominate at L>>L*; at the most extreme luminosities, AGN are important. However, all populations increase in luminosity at higher redshifts, owing to increasing gas fractions. Thus the 'transition' between normal and merger-dominated sources increases from the LIRG-ULIRG threshold at z~0 to bright Hyper-LIRG thresholds at z~2. The transition to dominance by obscured AGN evolves similarly, at factor of several higher L_IR. At all redshifts, non-merging systems dominate the total luminosity/SFR density, with merger-induced bursts constituting ~5-10% and AGN ~1-5%. Bursts contribute little to scatter in the SFR-stellar mass relation. In fact, many systems identified as 'ongoing' mergers will be forming stars in their 'normal' (non-burst) mode. Counting this as 'merger-induced' star formation leads to a stronger apparent redshift evolution in the contribution of mergers to the SFR density.Comment: 16 pages, 9 figures (+appendices), accepted to MNRAS. A routine to return the galaxy merger rates discussed here is available at http://www.cfa.harvard.edu/~phopkins/Site/mergercalc.htm
    corecore