1,650 research outputs found

    Learning to Generate Compositional Color Descriptions

    Full text link
    The production of color language is essential for grounded language generation. Color descriptions have many challenging properties: they can be vague, compositionally complex, and denotationally rich. We present an effective approach to generating color descriptions using recurrent neural networks and a Fourier-transformed color representation. Our model outperforms previous work on a conditional language modeling task over a large corpus of naturalistic color descriptions. In addition, probing the model's output reveals that it can accurately produce not only basic color terms but also descriptors with non-convex denotations ("greenish"), bare modifiers ("bright", "dull"), and compositional phrases ("faded teal") not seen in training.Comment: 6 pages, 4 figures, 3 tables. EMNLP 201

    Critical Cultural Awareness: Contributions To A Globalizing Psychology

    Get PDF
    The number of psychologists whose work crosses cultural boundaries is increasing. Without a critical awareness of their own cultural grounding, they risk imposing the assumptions, concepts, practices, and values of U.S.-centered psychology on societies where they do not fit, as a brief example from the 2004 Indian Ocean tsunami shows. Hermeneutic thinkers offer theoretical resources for gaining cultural awareness. Culture, in the hermeneutic view, is the constellation of meanings that constitutes a way of life. Such cultural meanings-especially in the form of folk psychologies and moral visions-inevitably shape every psychology, including U.S. psychology. The insights of hermeneutics, as well as its conceptual resources and research approaches, open the way for psychological knowledge and practice that are more culturally situated

    The Evolution of Cuspy Triaxial Galaxies Harboring Central Black Holes

    Full text link
    We use numerical simulations to study the evolution of triaxial elliptical galaxies with central black holes. In contrast to earlier numerical studies which used galaxy models with central density ``cores,'' our galaxies have steep central cusps, like those observed in real ellipticals. As a black hole grows in these cuspy triaxial galaxies, the inner regions become rounder owing to chaos induced in the orbit families which populate the model. At larger radii, however, the models maintain their triaxiality, and orbital analyses show that centrophilic orbits there resist stochasticity over many dynamical times. While black hole induced evolution is strong in the inner regions of these galaxies, and reaches out beyond the nominal ``sphere of influence'' of a black hole, our simulations do not show evidence for a rapid {\it global} transformation of the host. The triaxiality of observed elliptical galaxies is therefore not inconsistent with the presence of supermassive black holes at their centers.Comment: 15 pages, 7 figures (1 color). Accepted for publication in Ap

    Integration of the Total Lightning Jump Algorithm into Current Operational Warning Environment Conceptual Models

    Get PDF
    Key points that this analysis will begin to address are: 1)What physically is going on in the cloud when there is a jump in lightning? - Updraft variations, ice fluxes. 2)How do these processes fit in with severe storm conceptual models? 3)What would this information provide an end user (i.e., the forecaster)? - Relate LJA to radar observations, like changes in reflectivity, MESH, VIL, etc. based multi-Doppler derived physical relationships 4) How do we best transistionthis algorithm into the warning decision process. The known relationship between lightning updraft strength/volume and precipitation ice mass production can be extended to the concept of the lightning jump. Examination of the first lightning jump times from 329 storms in Schultz et al. shows an increase in the mean reflectivity profile and mixed phase echo volume during the 10 minutes prior to the lightning jump. Limited dual-Doppler results show that the largest lightning jumps are well correlated in time with increases in updraft strength/volume and precipitation ice mass production; however, the smaller magnitude lightning jumps appear to have more subtle relationships to updraft and ice mass characteristics

    Bogoliubov Excitations of Disordered Bose-Einstein Condensates

    Full text link
    We describe repulsively interacting Bose-Einstein condensates in spatially correlated disorder potentials of arbitrary dimension. The first effect of disorder is to deform the mean-field condensate. Secondly, the quantum excitation spectrum and condensate population are affected. By a saddle-point expansion of the many-body Hamiltonian around the deformed mean-field ground state, we derive the fundamental quadratic Hamiltonian of quantum fluctuations. Importantly, a basis is used such that excitations are orthogonal to the deformed condensate. Via Bogoliubov-Nambu perturbation theory, we compute the effective excitation dispersion, including mean free paths and localization lengths. Corrections to the speed of sound and average density of states are calculated, due to correlated disorder in arbitrary dimensions, extending to the case of weak lattice potentials.Comment: 23 pages, 11 figure

    Fragmentation of Massive Protostellar Disks

    Get PDF
    We examine whether massive-star accretion disks are likely to fragment due to self-gravity. Rapid accretion and high angular momentum push these disks toward fragmentation, whereas viscous heating and the high protostellar luminosity stabilize them. We find that for a broad range of protostar masses and for reasonable accretion times, massive disks larger than ~150 AU are prone to fragmentation. We develop an analytical estimate for the angular momentum of accreted material, extending the analysis of Matzner and Levin (2005) to account for strongly turbulent initial conditions. In a core-collapse model, we predict that disks are marginally prone to fragmentation around stars of about four to 15 solar masses -- even if we adopt conservative estimates of the disks' radii and tendency to fragment. More massive stars are progressively more likely to fragment, and there is a sharp drop in the stability of disk accretion at the very high accretion rates expected above 110 solar masses. Fragmentation may starve accretion in massive stars, especially above this limit, and is likely to create swarms of small, coplanar companions.Comment: 15 pages, 7 figures, accepted for publication in MNRAS, updated version with minor changes to tex

    Shockwave/Boundary-Layer Interaction Studies Performed in the NASA Langley 20-Inch Mach 6 Air Tunnel

    Get PDF
    This paper highlights results from a collaborative study performed by The University of Tennessee Space Institute (UTSI) and NASA Langley Research Center on the Shockwave/Boundary-Layer Interaction (SWBLI) generated by a cylindrical protuberance on a flat plate in a Mach 6 flow. The study was performed in the 20-Inch Mach 6 Air Tunnel at NASA Langley Research Center and consisted of two separate entries. In the first entry, simultaneous high-speed schlieren and high-speed pressure-sensitive paint (PSP) imaging which was performed for the first time in the 20-Inch Mach 6 facility at NASA Langley were performed as well as simultaneous high-speed schlieren and oil-flow imaging. In the second entry, the model configuration was modified to increase the size of the interaction region. High-speed schlieren and infrared thermography (IR) surface imaging were performed in this second entry. The goal of these tests was to characterize the SBLI in the presence of a laminar, transitional, and turbulent boundary layer using high-speed optical imaging techniques. AoA = sting angle-of-attack () dcylinder = cylinder diameter (mm) dtrip = cylindrical tripping element diameter (mm) shock = shock stand-off distance (mm) hcylinder = cylinder height (mm) htrip = cylindrical tripping element height (mm) HSS = high-speed schlieren M = freestream Mach number PSP = pressure-sensitive paint Re = freestream unit Reynolds number (m-1) SWBLI = shockwave/boundary-layer interaction plate = model plate angle () Introduction his paper highlights two experimental entries performed in the 20-Inch Mach 6 Air Blowdown Tunnel at NASA Langley Research Center in collaboration with The University of Tennessee Space Institute (UTSI). The purpose of these entries was to characterize the dynamic shockwave/boundary-layer interaction (SWBLI) between a vertical cylinder on a flat plate and laminar, transitional (XSWBLI), and turbulent (SWTBLI) boundary layers with a freestream Mach number of 6 using non-intrusive optical diagnostics. Experiments performed by Murphree et al.1,2 were among the first to specifically characterize XSWBLI induced by a vertical cylinder on a flat plate geometry using several optical measurement techniques. Recent optical studies of XSWBLI phenomenon have been performed by UTSI at Mach 2 in their low-enthalpy blow wind tunnel3-8 and by Texas A&M University and UTSI at Mach numbers of 6 and 7 in their Adjustable Contour Expansion wind tunnel.9 The experiments described in this paper were intended to complement previous studies by expanding the freestream unit Reynolds number range, Re, over which the XSWBLI phenomena has been observed. Additionally these experiments, made possible under NASAs new facility funding model under the Aeronautics Evaluation and Test Capabilities (AETC) project, promoted collaboration between university and NASA researchers. The initial entry in the 20-Inch Mach 6 Air Tunnel at NASA Langley occurred in December of 2016. Originally, testing was to occur in November of 2016 in the 31-Inch Mach 10 Air Tunnel at NASA Langley. This facility was chosen so that the XSWBLI phenomenon could be observed at much higher Mach numbers than had previously been attempted in ground test experiments. The model selected for this experiment, a 10 half-angle wedge with a sharp leading edge (described in detail in section II.B), had previously been used by Danehy et al. [10] for boundary layer transition studies using the nitric oxide planar laser-induced fluorescence (NO PLIF) flow visualization technique. In that work, it was determined that transition could be induced downstream of a single htrip = 1-mm tall, dtrip = 4-mm diameter cylindrical tripping element and that the streamwise location of the transition could be changed for a single Re by changing the model angle-of-attack (AoA) (see Fig. A3 in Ref. [10] for more details). Based on the findings of that work, a decision was made to use the wedge model with the cylindrical tripping element to trip the boundary layer flow ahead of a cylindrical protuberance in order to achieve a XSWBLI. Unfortunately, the 31-Inch Mach 10 facility had been taken offline for repairs in October of 2016 and a decision was made to move the test to the 20-Inch Mach 6 facility. Since the behavior of the boundary layer with the chosen model configuration had not been studied before in that facility and the available test time was limited, the entry was considered to be exploratory and was used to collect spatially-resolved and time-resolved flow and surface visualization data that would be used to inform a second entry. Test techniques included simultaneous high-speed schlieren (HSS) captured at 160 kHz and high-speed pressure sensitive paint captured at 10 kHz as well as oil flow visualization, captured at 750 Hz. The second entry in the 20-Inch Mach 6 facility occurred in June and July of 2017. In this follow-on test, modifications to the wind tunnel model were made based on observations made during the first entry and included removing the cylindrical tripping element, increasing the size of the cylinder used to induce the SWBLI to increase the size of the interaction while simultaneously improving spatial resolution, and using a swept ramp array, similar to that described in Ref. [11], to trip the flow to turbulence. Simultaneous HSS (captured at 140 kHz, 100 kHz, and 40 kHz) and conventional IR thermography (captured at 30 Hz) imaging were performed simultaneously in this follow-on entry. This paper is intended to serve as a summary of the work performed during these two entries, to detail lessons learned from each entry, and to highlight some of the datasets acquired. Details on the experimental setup, model configuration, and techniques used are provided. Papers providing a more rigorous analysis of data acquired during the second entry, including statistical, spectral, and modal decomposition methods, can be found in Refs. [12,13]. An entry examining XSWBLI in the 31-Inch Mach 10 Blowdown Wind Tunnel facility is currently planned for mid-to-late calendar year 2019, pending the success of facility repairs. The work performed and described in this paper and the upcoming entry in the 31-Inch Mach 10 facility at NASA Langley have been made possible by NASAs new facility funding model under the Aeronautics Evaluation and Test Capabilities (AETC) project. Wind Tunnel Facility All experiments discussed in this paper were performed in the 20-Inch Mach 6 Air Tunnel at NASA Langley Research Center. Specific details pertaining to this facility can be found in Refs. [14,15], with only a brief description of the facility provided here. For both entries, the nominal freestream unit Reynolds number was varied between 1.8106 m-1 (0.5106 ft-1) and 26.3106 m-1 (8106 ft-1). The nominal stagnation pressure was varied between 0.21 MPa and 3.33 MPa and the nominal stagnation temperature was varied between 480 K and 520 K to achieve the desired Re condition. For all runs, the nominal freestream Mach number was 6. The nearly square test section is 520.7-mm (20.5-inches) wide by 508-mm (20-inches) high. Two 431.8-mm (17-inch) diameter windows made of Corning 7940, Grade 5F schlieren-quality glass serve as the side walls of the tunnel and provide optical access for the high-speed schlieren measurements. A rectangular window made of the same material as the side windows served as the top wall of the test section and provided optical access for the high-speed PSP and oil flow measurements. For the second entry, this top window was replaced with a Zinc Selenide (ZnSe) window with an anti-reflection coating capable of passing IR wavelengths between 8m and 12m with greater than 98% transmittance. The model was sting supported by a strut attached to a hydraulic system that allows for the model pitch angle to be adjusted between -5 to +55. For the first entry, an initial pitch/pause sweep of the model AoA was performed to observe the resulting SWBLI. Ultimately, however, the sting pitch angle for this entry was fixed at +10.0 so that the angle of the top surface of the wedge relative to the streamwise axis of the tunnel (referred to herein as the plate angle, plate), was plate = 0. For the second entry, plate = 0 and plate = -13.25 were initially tested with the swept ramp array (discussed in the following section) to determine which orientation produced conditions most favorable for XSWBLI to occur based on the heating signatures observed over the top surface of the model in the IR thermography images. Based on these initial tests, plate = -13.25 was set for the remainder of the runs in the second entry. For both entries, any model changes were performed in a housing located beneath the closed test section. Prior to performing a run of the tunnel, the housing was sealed and the tunnel started. Once the appropriate freestream conditions were achieved, the model was injected into the test section using a hydraulic injection system. B. Model Geometry For all runs, a 10 half-angle (20 full-angle) wedge model with a sharp leading edge was used. The model is described in detail in Refs. [10,16]. The top surface of the sharp leading edge of the model extended 47.8 mm from its upstream-most edge to a junction with the upstream edge of a stainless steel top plate that then extended an (a) (c) (b) Fig. 1 (a) Schematic of top surface of wedge model with gas seeding insert, (b) perspective view of the model in the 20-Inch Mach 6 tunnel with centerline pressure orifices on sharp leading edge, and (c) a perspective view of the model with stainless steel (top) and SLA middle insert (bottom) during the first entry. Flow occurs from left to right

    Physical and Dynamical Linkages Between Lightning Jumps and Storm Conceptual Models

    Get PDF
    The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric radar techniques to resolve the physical and dynamical storm characteristics specifically around the time of the lightning jump. This information will help forecasters anticipate lightning jump occurrence, or even be of use to determine future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature on radar), providing additional lead time/confidence in the severe storm warning paradigm
    corecore