2,057 research outputs found
Leukemia risk and relevant benzene exposure period-Re: follow-up time on risk estimates, Am J Ind Med 42:481-489, 2002.
Engineering novel complement activity into a pulmonary surfactant protein
Complement neutralizes invading pathogens, stimulates inflammatory and adaptive immune responses, and targets non- or altered-self structures for clearance. In the classical and lectin activation pathways, it is initiated when complexes composed of separate recognition and activation subcomponents bind to a pathogen surface. Despite its apparent complexity, recognition-mediated activation has evolved independently in three separate protein families, C1q, mannose-binding lectins (MBLs), and serum ficolins. Although unrelated, all have bouquet-like architectures and associate with complement-specific serine proteases: MBLs and ficolins with MBL-associated serine protease-2 (MASP-2) and C1q with C1r and C1s. To examine the structural requirements for complement activation, we have created a number of novel recombinant rat MBLs in which the position and orientation of the MASP-binding sites have been changed. We have also engineered MASP binding into a pulmonary surfactant protein (SP-A), which has the same domain structure and architecture as MBL but lacks any intrinsic complement activity. The data reveal that complement activity is remarkably tolerant to changes in the size and orientation of the collagenous stalks of MBL, implying considerable rotational and conformational flexibility in unbound MBL. Furthermore, novel complement activity is introduced concurrently with MASP binding in SP-A but is uncontrolled and occurs even in the absence of a carbohydrate target. Thus, the active rather than the zymogen state is default in lectin·MASP complexes and must be inhibited through additional regions in circulating MBLs until triggered by pathogen recognition
National Center for Biomedical Ontology: Advancing biomedicine through structured organization of scientific knowledge
The National Center for Biomedical Ontology is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists, funded by the National Institutes of Health (NIH) Roadmap, to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated
tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease
Recommended from our members
The Global academic research organization network: Data sharing to cure diseases and enable learning health systems.
Introduction:Global data sharing is essential. This is the premise of the Academic Research Organization (ARO) Council, which was initiated in Japan in 2013 and has since been expanding throughout Asia and into Europe and the United States. The volume of data is growing exponentially, providing not only challenges but also the clear opportunity to understand and treat diseases in ways not previously considered. Harnessing the knowledge within the data in a successful way can provide researchers and clinicians with new ideas for therapies while avoiding repeats of failed experiments. This knowledge transfer from research into clinical care is at the heart of a learning health system. Methods:The ARO Council wishes to form a worldwide complementary system for the benefit of all patients and investigators, catalyzing more efficient and innovative medical research processes. Thus, they have organized Global ARO Network Workshops to bring interested parties together, focusing on the aspects necessary to make such a global effort successful. One such workshop was held in Austin, Texas, in November 2017. Representatives from Japan, Taiwan, Singapore, Europe, and the United States reported on their efforts to encourage data sharing and to use research to inform care through learning health systems. Results:This experience report summarizes presentations and discussions at the Global ARO Network Workshop held in November 2017 in Austin, TX, with representatives from Japan, Korea, Singapore, Taiwan, Europe, and the United States. Themes and recommendations to progress their efforts are explored. Standardization and harmonization are at the heart of these discussions to enable data sharing. In addition, the transformation of clinical research processes through disruptive innovation, while ensuring integrity and ethics, will be key to achieving the ARO Council goal to overcome diseases such that people not only live longer but also are healthier and happier as they age. Conclusions:The achievement of global learning health systems will require further exploration, consensus-building, funding aligned with incentives for data sharing, standardization, harmonization, and actions that support global interests for the benefit of patients
Characteristics and incidence of transfusion-associated necrotizing enterocolitis in the UK
BACKGROUND AND AIMS: The etiology of necrotizing enterocolitis (NEC) is unclear and postulated as being multifactorial. It has been suggested that one causative factor is the transfusion of packed red blood cells (PRBCs) leading to the disease entity commonly referred to as transfusion-associated NEC (TANEC). TANEC has been reported in North America but its incidence has not been formally investigated in the UK. Our aims were to identify the incidence of NEC and TANEC in tertiary-level UK neonatal units and to describe characteristics of TANEC cases. MATERIALS AND METHODS: Using strict case definitions for NEC and TANEC, we undertook a retrospective review to estimate the incidence of TANEC cases occurring in four UK tertiary-level centers during a 38-month period. RESULTS: Of 8007 consecutive neonatal admissions of all gestations to the four centers, 68 babies went on to develop NEC and all affected infants were of very low birth weight (VLBW); 34 of these had previously received a transfusion of PRBCs but did not fit the diagnostic criteria for TANEC, whereas 15 (22%) of the 68 babies with NEC qualified as TANEC cases. UK cases occurred at an earlier postnatal age than cases reported in multiple large North American series and were of a lower birth weight. CONCLUSIONS: We have confirmed the presence of TANEC in the UK VLBW neonatal population. Its incidence lies within the wide range described in previous reports of this phenomenon globally, though with some local variation in characteristics. Further work is needed to clarify causation, pathophysiology, and possible mechanisms of prevention of TANEC
Neurocognitive Effects of Repetitive Transcranial Magnetic Stimulation in Adolescents with Major Depressive Disorder
Objectives: It is estimated that 30–40% of adolescents with major depressive disorder (MDD) do not receive full benefit from current antidepressant therapies. Repetitive transcranial magnetic stimulation (rTMS) is a novel therapy approved by the US Food and Drug Administration to treat adults with MDD. Research suggests rTMS is not associated with adverse neurocognitive effects in adult populations; however, there is no documentation of its neurocognitive effects in adolescents. This is a secondary post hoc analysis of neurocognitive outcome in adolescents who were treated with open-label rTMS in two separate studies. Methods: Eighteen patients (mean age, 16.2 ± 1.1 years; 11 females, 7 males) with MDD who failed to adequately respond to at least one antidepressant agent were enrolled in the study. Fourteen patients completed all 30 rTMS treatments (5 days/week, 120% of motor threshold, 10 Hz, 3,000 stimulations per session) applied to the left dorsolateral prefrontal cortex. Depression was rated using the Children’s Depression Rating Scale-Revised. Neurocognitive evaluation was performed at baseline and after completion of 30 rTMS treatments with the Children’s Auditory Verbal Learning Test (CAVLT) and Delis–Kaplan Executive Function System Trail Making Test. Results: Over the course of 30 rTMS treatments, adolescents showed a substantial decrease in depression severity. Commensurate with improvement in depressive symptoms was a statistically significant improvement in memory and delayed verbal recall. Other learning and memory indices and executive function remained intact. Neither participants nor their family members reported clinically meaningful changes in neurocognitive function. Conclusion: These preliminary findings suggest rTMS does not adversely impact neurocognitive functioning in adolescents and may provide subtle enhancement of verbal memory as measured by the CAVLT. Further controlled investigations with larger sample sizes and rigorous trial designs are warranted to confirm and extend these findings
Development of the preterm gut microbiome in twins at risk of necrotising enterocolitis and sepsis
The preterm gut microbiome is a complex dynamic community influenced by genetic and environmental factors and is implicated in the pathogenesis of necrotising enterocolitis (NEC) and sepsis. We aimed to explore the longitudinal development of the gut microbiome in preterm twins to determine how shared environmental and genetic factors may influence temporal changes and compared this to the expressed breast milk (EBM) microbiome. Stool samples (n = 173) from 27 infants (12 twin pairs and 1 triplet set) and EBM (n = 18) from 4 mothers were collected longitudinally. All samples underwent PCR-DGGE (denaturing gradient gel electrophoresis) analysis and a selected subset underwent 454 pyrosequencing. Stool and EBM shared a core microbiome dominated by Enterobacteriaceae, Enterococcaceae, and Staphylococcaceae. The gut microbiome showed greater similarity between siblings compared to unrelated individuals. Pyrosequencing revealed a reduction in diversity and increasing dominance of Escherichia sp. preceding NEC that was not observed in the healthy twin. Antibiotic treatment had a substantial effect on the gut microbiome, reducing Escherichia sp. and increasing other Enterobacteriaceae.
This study demonstrates related preterm twins share similar gut microbiome development, even within the complex environment of neonatal intensive care. This is likely a result of shared genetic and immunomodulatory factors as well as exposure to the same maternal microbiome during birth, skin contact and exposure to EBM. Environmental factors including antibiotic exposure and feeding are additional significant determinants of community structure, regardless of host genetics
A global view of the oncogenic landscape in nasopharyngeal carcinoma : an integrated analysis at the genetic and expression levels
Previous studies have reported that the tumour cells of nasopharyngeal carcinoma (NPC) exhibit recurrent chromosome abnormalities. These genetic changes are broadly assumed to lead to changes in gene expression which are important for the pathogenesis of this tumour. However, this assumption has yet to be formally tested at a global level. Therefore a genome wide analysis of chromosome copy number and gene expression was performed in tumour cells micro-dissected from the same NPC biopsies. Cellular tumour suppressor and tumour-promoting genes (TSG, TPG) and Epstein-Barr Virus (EBV)-encoded oncogenes were examined. The EBV-encoded genome maintenance protein EBNA1, along with the putative oncogenes LMP1, LMP2 and BARF1 were expressed in the majority of NPCs that were analysed. Significant downregulation of expression in an average of 76 cellular TSGs per tumour was found, whilst a per-tumour average of 88 significantly upregulated, TPGs occurred. The expression of around 60% of putative TPGs and TSGs was both up-and down-regulated in different types of cancer, suggesting that the simplistic classification of genes as TSGs or TPGs may not be entirely appropriate and that the concept of context-dependent onco-suppressors may be more extensive than previously recognised. No significant enrichment of TPGs within regions of frequent genomic gain was seen but TSGs were significantly enriched within regions of frequent genomic loss. It is suggested that loss of the FHIT gene may be a driver of NPC tumourigenesis. Notwithstanding the association of TSGs with regions of genomic loss, on a gene by gene basis and excepting homozygous deletions and high-level amplification, there is very little correlation between chromosomal copy number aberrations and expression levels of TSGs and TPGs in NPC
Recommended from our members
Biological, clinical and population relevance of 95 loci for blood lipids.
Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in >100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P < 5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD
- …
