77 research outputs found
Working with Climate Projections to Estimate Disease Burden: Perspectives from Public Health
There is interest among agencies and public health practitioners in the United States (USA) to estimate the future burden of climate-related health outcomes. Calculating disease burden projections can be especially daunting, given the complexities of climate modeling and the multiple pathways by which climate influences public health. Interdisciplinary coordination between public health practitioners and climate scientists is necessary for scientifically derived estimates. We describe a unique partnership of state and regional climate scientists and public health practitioners assembled by the Florida Building Resilience Against Climate Effects (BRACE) program. We provide a background on climate modeling and projections that has been developed specifically for public health practitioners, describe methodologies for combining climate and health data to project disease burden, and demonstrate three examples of this process used in Florida
Environmental Predictors of Seasonal Influenza Epidemics across Temperate and Tropical Climates
Human influenza infections exhibit a strong seasonal cycle in temperate regions. Recent laboratory and epidemiological evidence suggests that low specific humidity conditions facilitate the airborne survival and transmission of the influenza virus in temperate regions, resulting in annual winter epidemics. However, this relationship is unlikely to account for the epidemiology of influenza in tropical and subtropical regions where epidemics often occur during the rainy season or transmit year-round without a well-defined season. We assessed the role of specific humidity and other local climatic variables on influenza virus seasonality by modeling epidemiological and climatic information from 78 study sites sampled globally. We substantiated that there are two types of environmental conditions associated with seasonal influenza epidemics: “cold-dry” and “humid-rainy”. For sites where monthly average specific humidity or temperature decreases below thresholds of approximately 11–12 g/kg and 18–21°C during the year, influenza activity peaks during the cold-dry season (i.e., winter) when specific humidity and temperature are at minimal levels. For sites where specific humidity and temperature do not decrease below these thresholds, seasonal influenza activity is more likely to peak in months when average precipitation totals are maximal and greater than 150 mm per month. These findings provide a simple climate-based model rooted in empirical data that accounts for the diversity of seasonal influenza patterns observed across temperate, subtropical and tropical climates
Temperature Influences on<i>Salmonella</i>Infections across the Continental United States
Seasonal characteristics of influenza vary regionally across US.
Given substantial regional differences in absolute humidity across the US and our understanding of the relationship between absolute humidity and influenza, we may expect important differences in regional seasonal influenza activity. Here, we assessed cross-seasonal influenza activity by comparing counts of positive influenza A and B rapid test results during the influenza season versus summer baseline periods for the 2016/2017 and 2017/2018 influenza years. Our analysis indicates significant regional patterns in cross-seasonal influenza activity, with relatively fewer influenza cases during the influenza season compared to summertime baseline periods in humid areas of the US, particularly in Florida and Hawaii. The cross-seasonal ratios vary from year-to-year and influenza type, but the geographic patterning of the ratios is relatively consistent. Mixed-effects regression models indicated absolute humidity during the influenza season was the strongest predictor of cross-seasonal influenza activity, suggesting a relationship between absolute humidity and cross-seasonal influenza activity. There was also evidence that absolute humidity during the summer plays a role, as well. This analysis suggests that spatial variation in seasonal absolute humidity levels may generate important regional differences in seasonal influenza activity and dynamics in the US
Climatic Controls on West Nile Virus and Sindbis Virus Transmission and Outbreaks in South Africa
Seasonal characteristics of influenza vary regionally across US - Fig 3
Percent-positivity rates during the baseline season for influenza A and B during 2016–2017 and 2017–2018. Plus/minus symbols indicate subregions where the ratio was significantly below/above expected value (based on Fisher’s exact tests). Dashed areas are subregions with no or inadequate numbers of positive tests.</p
Basic summary of the results stratified by year and influenza type.
Moran’s I values are similar to correlation coefficients with values typically ranging from -1 to 1 and higher values indicating higher spatial autocorrelation.</p
- …
