34,357 research outputs found
Spin-dependent localized Hartree-Fock density-functional approach for the accurate treatment of inner-shell excitation of close-shell atoms
We present a spin-dependent localized Hartree-Fock (SLHF) density-functional
approach for the treatment of the inner-shell excited-state calculation of
atomic systems. In this approach, the electron spin-orbitals in an electronic
configuration are obtained first by solving Kohn-Sham (KS) equation with SLHF
exchange potential. Then a single-Slater-determinant energy of the electronic
configuration is calculated by using these electron spin-orbitals. Finally, a
multiplet energy of an inner-shell excited state is evaluated from the
single-Slater-determinant energies of the electronic configurations involved in
terms of Slater's diagonal sum rule. This procedure has been used to calculate
the total and excitation energies of inner-shell excited states of close-shell
atomic systems: Be, B^+, Ne, and Mg. The correlation effect is taken into
account by incorporating the correlation potentials and energy functionals of
Perdew and Wang's (PW) or Lee, Yang, and Parr's (LYP) into calculation. The
calculated results with the PW and LYP energy functionals are in overall good
agreement with each other and also with available experimental and other ab
initio theoretical data. In addition, we present some new results for highly
excited inner-shell states.Comment: 8 pages and 9 table
Rapid optimization of working parameters of microwave-driven multi-level qubits for minimal gate leakage
We propose an effective method to optimize the working parameters (WPs) of
microwave-driven quantum logical gates implemented with multi-level physical
qubits. We show that by treating transitions between each pair of levels
independently, intrinsic gate errors due primarily to population leakage to
undesired states can be estimated accurately from spectroscopic properties of
the qubits and minimized by choosing appropriate WPs. The validity and
efficiency of the approach are demonstrated by applying it to optimize the WPs
of two coupled rf SQUID flux qubits for controlled-NOT (CNOT) operation. The
result of this independent transition approximation (ITA) is in good agreement
with that of dynamic method (DM). Furthermore, the ratio of the speed of ITA to
that of DM scales exponentially as 2^n when the number of qubits n increases.Comment: 4pages, 3 figure
Search for exotic spin-dependent interactions with a spin-exchange relaxation-free magnetometer
We propose a novel experimental approach to explore exotic spin-dependent
interactions using a spin-exchange relaxation-free (SERF) magnetometer, the
most sensitive non-cryogenic magnetic-field sensor. This approach studies the
interactions between optically polarized electron spins located inside a vapor
cell of the SERF magnetometer and unpolarized or polarized particles of
external solid-state objects. The coupling of spin-dependent interactions to
the polarized electron spins of the magnetometer induces the tilt of the
electron spins, which can be detected with high sensitivity by a probe laser
beam similarly as an external magnetic field. We estimate that by moving
unpolarized or polarized objects next to the SERF Rb vapor cell, the
experimental limit to the spin-dependent interactions can be significantly
improved over existing experiments, and new limits on the coupling strengths
can be set in the interaction range below 0.01 m
Steady-state entanglement in a double-well Bose-Einstein condensate through coupling to a superconducting resonator
We consider a two-component Bose-Einstein condensate in a double-well
potential, where the atoms are magnetically coupled to a single-mode of the
microwave field inside a superconducting resonator. We find that the system has
the different dark-state subspaces in the strong- and weak-tunneling regimes,
respectively. In the limit of weak tunnel coupling, steady-state entanglement
between the two spatially separated condensates can be generated by evolving to
a mixture of dark states via the dissipation of the photon field. We show that
the entanglement can be faithfully indicated by an entanglement witness.
Long-lived entangled states are useful for quantum information processing with
atom-chip devices.Comment: 9 pages, 7 figures, minor revisio
Credit Channel without the LM Curve
This paper extends Bernanke and Blinder (1988)'s macroeconomic model of credit channel to an environment where the monetary authority has control over a short-term interest rate. The comparative statics regarding changes in the market interest rate, in the required reserve ratio over bank deposits, and in the risk of public bonds are highlighted.
Exploration of the memory effect on the photon-assisted tunneling via a single quantum dot: A generalized Floquet theoretical approach
The generalized Floquet approach is developed to study memory effect on
electron transport phenomena through a periodically driven single quantum dot
in an electrode-multi-level dot-electrode nanoscale quantum device. The memory
effect is treated using a multi-function Lorentzian spectral density (LSD)
model that mimics the spectral density of each electrode in terms of multiple
Lorentzian functions. For the symmetric single-function LSD model involving a
single-level dot, the underlying single-particle propagator is shown to be
related to a 2 x 2 effective time-dependent Hamiltonian that includes both the
periodic external field and the electrode memory effect. By invoking the
generalized Van Vleck (GVV) nearly degenerate perturbation theory, an
analytical Tien-Gordon-like expression is derived for arbitrary order multi-
photon resonance d.c. tunneling current. Numerically converged simulations and
the GVV analytical results are in good agreement, revealing the origin of
multi- photon coherent destruction of tunneling and accounting for the
suppression of the staircase jumps of d.c. current due to the memory effect.
Specially, a novel blockade phenomenon is observed, showing distinctive
oscillations in the field-induced current in the large bias voltage limit
- …
