3,035 research outputs found
Analysis of electrodeposited CdTe thin films grown using cadmium chloride precursor for applications in solar cells
Deposition of cadmium telluride (CdTe) from cadmium chloride (CdCl2) and tellurium oxide has been achieved by electroplating technique using two-electrode configuration. Cyclic voltammetry shows that near-stoichiometric CdTe is achievable between 1330 and 1400 mV deposition voltage range. The layers grown were characterised using X-ray diffraction (XRD), UV–Visible spectrophotometry, scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), photoelectrochemical (PEC) cell and DC conductivity measurements. The XRD shows that the electrodeposited CdTe layer is polycrystalline in nature. The UV–Visible spectrophotometry shows that the bandgap of both as-deposited and heat-treated CdTe films are in the range of (1.44–1.46) eV. The SEM shows grain growth after CdCl2 treatment, while, the EDX shows the effect of growth voltage on the atomic composition of CdTe layers. The PEC results show that both p- and n-type CdTe can be electrodeposited and the DC conductivity reveals that the high resistivity is at the inversion growth voltage (Vi) for the as-deposited and CdCl2 treated layers
The Subleading Term of the Strong Coupling Expansion of the Heavy-Quark Potential in a Super Yang-Mills Plasma
Applying the AdS/CFT correspondence, the expansion of the heavy-quark
potential of the supersymmetric Yang-Mills theory at large is
carried out to the sub-leading term in the large 't Hooft coupling at nonzero
temperatures. The strong coupling corresponds to the semi-classical expansion
of the string-sigma model, the gravity dual of the Wilson loop operator, with
the sub-leading term expressed in terms of functional determinants of
fluctuations. The contributions of these determinants are evaluated
numerically.Comment: 17 pages in JHEP3, typos fixed, updated version to be published in
JHE
Scientific complications and controversies noted in the field of CdS/CdTe thin film solar cells and the way forward for further development
Cadmium telluride-based solar cell is the most successfully commercialised thin film solar cell today. The laboratory-scale small devices have achieved ~ 22%, and commercial solar panels have reached ~ 18% conversion efficiencies. However, there are various technical complications and some notable scientific contradictions that appear in the scientific literature published since the early 1970s. This review paper discusses some of these major complications and controversies in order to focus future research on issues of material growth and characterisation, post-growth processing, device architectures and interpretation of the results. Although CdTe can be grown using more than 14 different growth techniques, successful commercialisation has been taken place using close-space sublimation and electrodeposition techniques only. The experimental results presented in this review are mainly based on electrodeposition. Historical trends of research and commercial successes have also been discussed compared to the timeline of novel breakthroughs in this field. Deeper understanding of these issues may lead to further increase in conversion efficiencies of this solar cell. Some novel ideas for further development of thin film solar cells are also discussed towards the end of this paper
Electrodeposition of CdTe thin films using nitrate precursor for applications in solar cells
Cadmium telluride (CdTe) thin films have been electrodeposited (ED) on glass/fluorine-doped tin oxide (FTO) substrates using simplified two-electrode system in acidic and aqueous solution containing Cd(NO3)2 4H2O and TeO2. The X-ray diffraction (XRD), optical absorption, photoelectrochemical (PEC) cell measurements, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) have been carried out to study the structural, optical, electrical and morphological properties of the CdTe layers. The XRD study shows that the ED-CdTe layers are polycrystalline with cubic crystal structure. Results obtained from optical absorption reveal that the bandgaps of the as-deposited and the CdCl2 treated CdTe layers are in the ranges ~1.50 to ~1.54 eV and ~1.46 to ~1.51 eV, respectively. Observation from PEC measurements indicates a p-, i- and n-type electrical conductivity for as-deposited CdTe layers grown in the cathodic voltage range (1,247–1,258) mV. The SEM images indicate noticeable change in CdTe grain size from ~85 to ~430 nm after CdCl2 treatment with uniform surface coverage of the glass/FTO substrate. The TEM images show the columnar growth structure for as-deposited and CdCl2 treated CdTe layers. The TEM images also indicate an increase in grain’s diameter from ~50 to ~200 nm after CdCl2 treatment
A Novel Mutation in the Upstream Open Reading Frame of the CDKN1B Gene Causes a MEN4 Phenotype
PubMed ID: 23555276This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Silicon Mie Resonators for Highly Directional Light Emission from monolayer MoS2
Controlling light emission from quantum emitters has important applications
ranging from solid-state lighting and displays to nanoscale single-photon
sources. Optical antennas have emerged as promising tools to achieve such
control right at the location of the emitter, without the need for bulky,
external optics. Semiconductor nanoantennas are particularly practical for this
purpose because simple geometries, such as wires and spheres, support multiple,
degenerate optical resonances. Here, we start by modifying Mie scattering
theory developed for plane wave illumination to describe scattering of dipole
emission. We then use this theory and experiments to demonstrate several
pathways to achieve control over the directionality, polarization state, and
spectral emission that rely on a coherent coupling of an emitting dipole to
optical resonances of a Si nanowire. A forward-to-backward ratio of 20 was
demonstrated for the electric dipole emission at 680 nm from a monolayer MoS2
by optically coupling it to a Si nanowire
Canine respiratory coronavirus employs caveolin-1-mediated pathway for internalization to HRT-18G cells
Canine respiratory coronavirus (CRCoV), identified in 2003, is a member of the Coronaviridae family. The virus is a betacoronavirus and a close relative of human coronavirus OC43 and bovine coronavirus. Here, we examined entry of CRCoV into human rectal tumor cells (HRT-18G cell line) by analyzing co-localization of single virus particles with cellular markers in the presence or absence of chemical inhibitors of pathways potentially involved in virus entry. We also targeted these pathways using siRNA. The results show that the virus hijacks caveolin-dependent endocytosis to enter cells via endocytic internalization
Quark-antiquark potential in AdS at one loop
We derive an exact analytical expression for the one-loop partition function
of a string in AdS_5xS^5 background with world-surface ending on two
anti-parallel lines. All quantum fluctuations are shown to be governed by
integrable, single-gap Lame' operators. The first strong coupling correction to
the quark-antiquark potential, as defined in N=4 SYM, is derived as the sum of
known mathematical constants and a one-dimensional integral representation. Its
full numerical value can be given with arbitrary precision and confirms a
previous result.Comment: 16 pages. Typos corrected, minor change
Association between cardiorespiratory fitness and the prevalence of metabolic syndrome among Korean adults: a cross sectional study
BACKGROUND: The purpose of the current study was to investigate the association between cardiorespiratory fitness (CRF), measured by a simple step test, and the prevalence of metabolic syndrome among Korean adults, in a cross sectional design. METHODS: A total of 1,007 Korean adults (488 men and 519 women) who underwent routine health checkups were recruited. CRF was measured by Tecumseh step test. The National Cholesterol Education Program’s Adult Treatment Panel III guideline was used to determine the prevalence of metabolic syndrome. A logistic regression was performed to reveal possible associations. RESULTS: The results of the study showed that a lower level of CRF was significantly associated with a higher prevalence of metabolic syndrome in men, but not in women. On the other hand, higher BMI was associated with a higher prevalence of metabolic syndrome in both men and women. However, BMI was not associated with fasting glucose nor hemoglobinA1c in men. When the combined impact of BMI and CRF on the prevalence of metabolic syndrome was analyzed, a significantly increased prevalence of metabolic syndrome was found in both men (odds ratio [OR]: 18.8, 95% Confidence Interval [CI]: 5.0 - 70.5) and women (OR: 8.1, 95% CI: 2.8 - 23.9) who had high BMI and low cardiorespiratory fitness. On the other hand, the prevalence of metabolic syndrome was only increased 7.9 times (95% CI: 2.0 - 31.2) in men and 5.4 times (95% CI: 1.9 - 15.9) in women who had high level of CRF and high BMI. CONCLUSION: In conclusion, the current study demonstrated the low CRF and obesity was a predictor for metabolic syndrome in Korean adults
Uptake and transport of novel amphiphilic polyelectrolyte-insulin nanocomplexes by caco-2 cells - towards oral insulin
“The original publication is available at www.springerlink.com”. Copyright SpringerPurpose: The influence of polymer architecture on cellular uptake and transport across Caco-2 cells of novel amphiphilic polyelectrolyte-insulin nanocomplexes was investigated. Method: Polyallylamine (PAA) (15 kDa) was grafted with palmitoyl chains (Pa) and subsequently modified with quaternary ammonium moieties (QPa). These two amphiphilic polyelectrolytes (APs) were tagged with rhodamine and their uptake by Caco-2 cells or their polyelectrolyte complexes (PECs) with fluorescein isothiocyanate-insulin (FITC-insulin) uptake were investigated using fluorescence microscopy. The integrity of the monolayer was determined by measurement of transepithelial electrical resistance (TEER). Insulin transport through Caco-2 monolayers was determined during TEER experiments. Result: Pa and insulin were co-localised in the cell membranes while QPa complexes were found within the cytoplasm. QPa complex uptake was not affected by calcium, cytochalasin D or nocodazole. Uptake was reduced by co-incubation with sodium azide, an active transport inhibitor. Both polymers opened tight junctions reversibly where the TEER values fell by up to 35 % within 30 minutes incubation with Caco-2 cells. Insulin transport through monolayers increased when QPa was used (0.27 ngmL-1 of insulin in basal compartment) compared to Pa (0.14 ngmL-1 of insulin in basal compartment) after 2 hours. Conclusion: These APs have been shown to be taken up by Caco-2 cells and reversibly open tight cell junctions. Further work is required to optimise these formulations with a view to maximising their potential to facilitate oral delivery of insulin.Peer reviewe
- …
