12,751 research outputs found
Combinatorics and formal geometry of the master equation
We give a general treatment of the master equation in homotopy algebras and
describe the operads and formal differential geometric objects governing the
corresponding algebraic structures. We show that the notion of Maurer-Cartan
twisting is encoded in certain automorphisms of these universal objects
On the structure of the Si(103) surface
Although (103) is a stable nominal orientation for both silicon and
germanium, experimental observations revealed that in the case of silicon this
surface remains disordered on an atomic scale even after careful annealing. We
report here a set of low-energy reconstruction models corresponding to , , and periodicities, and propose that the observed
disorder stems from the presence of several coexisting reconstructions with
different morphologies and nearly equal surface energies. These models also
suggest that the model structures previously reported in the literature for the
(103) orientation have very high surface energies and are thus unlikely to be
experimentally observed.Comment: 4 pages, 3 figures, submitted for publicatio
Holographic data storage in a DX-center material
We report on the optical storage of digital data in a semiconductor sample containing DX centers. The diffraction efficiency and the bit-error-rate performance of multiplexed data images are shown to agree well with a simple model of the material. Uniform storage without an exposure schedule is demonstrated. The volume sensitivity is found to be ~10^3 times that of LiNBO3:Fe. The importance of coherent addition of scattered light with diffracted light in holographic data storage is discussed
Fast Quantum Search Algorithms in Protein Sequence Comparison - Quantum Biocomputing
Quantum search algorithms are considered in the context of protein sequence
comparison in biocomputing. Given a sample protein sequence of length m (i.e m
residues), the problem considered is to find an optimal match in a large
database containing N residues. Initially, Grover's quantum search algorithm is
applied to a simple illustrative case - namely where the database forms a
complete set of states over the 2^m basis states of a m qubit register, and
thus is known to contain the exact sequence of interest. This example
demonstrates explicitly the typical O(sqrt{N}) speedup on the classical O(N)
requirements. An algorithm is then presented for the (more realistic) case
where the database may contain repeat sequences, and may not necessarily
contain an exact match to the sample sequence. In terms of minimizing the
Hamming distance between the sample sequence and the database subsequences the
algorithm finds an optimal alignment, in O(sqrt{N}) steps, by employing an
extension of Grover's algorithm, due to Boyer, Brassard, Hoyer and Tapp for the
case when the number of matches is not a priori known.Comment: LaTeX, 5 page
Fast Shocks From Magnetic Reconnection Outflows
Magnetic reconnection is commonly perceived to drive flow and particle
acceleration in flares of solar, stellar, and astrophysical disk coronae but
the relative roles of different acceleration mecha- nisms in a given
reconnection environment are not well understood. We show via direct numerical
simulations that reconnection outflows produce weak fast shocks, when
conditions for fast recon- nection are met and the outflows encounter an
obstacle. The associated compression ratios lead to a Fermi acceleration
particle spectrum that is significantly steeper than the strong fast shocks
commonly studied, but consistent with the demands of solar flares. While this
is not the only acceleration mechanism operating in a reconnection environment,
it is plausibly a ubiquitous one
Unified model for vortex-string network evolution
We describe and numerically test the velocity-dependent one-scale (VOS)
string evolution model, a simple analytic approach describing a string network
with the averaged correlation length and velocity. We show that it accurately
reproduces the large-scale behaviour (in particular the scaling laws) of
numerical simulations of both Goto-Nambu and field theory string networks. We
explicitly demonstrate the relation between the high-energy physics approach
and the damped and non-relativistic limits which are relevant for condensed
matter physics. We also reproduce experimental results in this context and show
that the vortex-string density is significantly reduced by loop production, an
effect not included in the usual `coarse-grained' approach.Comment: 5 pages; v2: cosmetic changes, version to appear in PR
Scaling issues in ensemble implementations of the Deutsch-Jozsa algorithm
We discuss the ensemble version of the Deutsch-Jozsa (DJ) algorithm which
attempts to provide a "scalable" implementation on an expectation-value NMR
quantum computer. We show that this ensemble implementation of the DJ algorithm
is at best as efficient as the classical random algorithm. As soon as any
attempt is made to classify all possible functions with certainty, the
implementation requires an exponentially large number of molecules. The
discrepancies arise out of the interpretation of mixed state density matrices.Comment: Minor changes, reference added, replaced with publised versio
- …
