67 research outputs found
Effect of the G72 (DAOA) putative risk haplotype on cognitive functions in healthy subjects
<p>Abstract</p> <p>Background</p> <p>In the last years, several susceptibility genes for psychiatric disorders have been identified, among others <it>G72 </it>(also named D-amino acid oxidase activator, DAOA). Typically, the high-risk variant of a vulnerability gene is associated with decreased cognitive functions already in healthy individuals. In a recent study however, a positive effect of the high-risk variant of <it>G72 </it>on verbal working memory was reported. In the present study, we therefore examined the relationship between <it>G72 </it>genotype status and a broad range of cognitive functions in 423 healthy individuals.</p> <p>Methods</p> <p>The <it>G72 </it>carrier status was assessed by the two single nucleotide polymorphisms (SNPs) M23 and M24. Subjects were divided into three risk groups (low, intermediate and high risk).</p> <p>Results</p> <p><it>G72 </it>status influenced a number of cognitive functions, such as verbal working memory, attention, and, at a trend level, spatial working memory and executive functions. Interestingly, the high-risk allele carriers scored better than one or even both other groups.</p> <p>Conclusion</p> <p>Our data show that the putative high-risk haplotype (i.e. homozygote C/C-allele carriers in SNP M23 and homozygote T/T-allele carriers in SNP M24) is in healthy individuals not necessarily associated with worse performance in cognitive functions, but even with better performance in some domains. Further work is required to identify the mechanisms of <it>G72 </it>on brain functions.</p
The associations of anthropometric, behavioural and sociodemographic factors with circulating concentrations of IGF-I, IGF-II, IGFBP-1, IGFBP-2, and IGFBP-3 in a pooled analysis of 16,024 men from 22 studies
Insulin-like growth factors (IGFs) and insulin-like growth factor binding proteins (IGFBPs) have been implicated in the aetiology of several cancers. To better understand whether anthropometric, behavioural, and sociodemographic factors may play a role in cancer risk via IGF signalling, we examined the cross-sectional associations of these exposures with circulating concentrations of IGFs (IGF-I, IGF-II) and IGFBPs (IGFBP-1, IGFBP-2, IGFBP-3). The Endogenous Hormones, Nutritional Biomarkers and Prostate Cancer Collaborative Group dataset includes individual participant data from 16,024 male controls (i.e. without prostate cancer) aged 22-89 years from 22 prospective studies. Geometric means of protein concentrations were estimated using analysis of variance, adjusted for relevant covariates. Older age was associated with higher concentrations of IGFBP-1 and IGFBP-2 and lower concentrations of IGF-I, IGF-II, and IGFBP-3. Higher body mass index was associated with lower concentrations of IGFBP-1 and IGFBP-2. Taller height was associated with higher concentrations of IGF-I and IGFBP-3 and lower concentrations of IGFBP-1. Smokers had higher concentrations of IGFBP-1 and IGFBP-2 and lower concentrations of IGFBP-3 than non-smokers. Higher alcohol consumption was associated with higher concentrations of IGF-II and lower concentrations of IGF-I and IGFBP-2. African Americans had lower concentrations of IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3 and Hispanics had lower IGF-I, IGF-II and IGFBP-3 than non-Hispanic whites. These findings indicate that a range of anthropometric, behavioural, and sociodemographic factors are associated with circulating concentrations of IGFs and IGFBPs in men, which will lead to a greater understanding of the mechanisms through which these factors influence cancer risk. This article is protected by copyright. All rights reserved
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5 μm to 12 μm with the JWST’s Mid-Infrared Instrument. The spectra reveal a large day–night temperature contrast (with average brightness temperatures of 1,524 ± 35 K and 863 ± 23 K, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase-curve shape and emission spectra strongly suggest the presence of nightside clouds that become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1–6 ppm, depending on model assumptions). Our results provide strong evidence that the atmosphere of WASP-43b is shaped by disequilibrium processes and provide new insights into the properties of the planet’s nightside clouds. However, the remaining discrepancies between our observations and our predictive atmospheric models emphasize the importance of further exploring the effects of clouds and disequilibrium chemistry in numerical models
Mutations in the histone methyltransferase gene KMT2B cause complex early-onset dystonia.
Histone lysine methylation, mediated by mixed-lineage leukemia (MLL) proteins, is now known to be critical in the regulation of gene expression, genomic stability, cell cycle and nuclear architecture. Despite MLL proteins being postulated as essential for normal development, little is known about the specific functions of the different MLL lysine methyltransferases. Here we report heterozygous variants in the gene KMT2B (also known as MLL4) in 27 unrelated individuals with a complex progressive childhood-onset dystonia, often associated with a typical facial appearance and characteristic brain magnetic resonance imaging findings. Over time, the majority of affected individuals developed prominent cervical, cranial and laryngeal dystonia. Marked clinical benefit, including the restoration of independent ambulation in some cases, was observed following deep brain stimulation (DBS). These findings highlight a clinically recognizable and potentially treatable form of genetic dystonia, demonstrating the crucial role of KMT2B in the physiological control of voluntary movement.Funding for the project was provided by the Wellcome Trust for UK10K (WT091310) and DDD Study. The DDD study presents independent research commissioned by the Health Innovation Challenge Fund [grant number HICF-1009-003] - see www.ddduk.org/access.html for full acknowledgement. This work was supported in part by the Intramural Research Program of the National Human Genome Research Institute and the Common Fund, NIH Office of the Director. This work was supported in part by the German Ministry of Research and Education (grant nos. 01GS08160 and 01GS08167; German Mental Retardation Network) as part of the National Genome Research Network to A.R. and D.W. and by the Deutsche Forschungsgemeinschaft (AB393/2-2) to A.R. Brain expression data was provided by the UK Human Brain Expression Consortium (UKBEC), which comprises John A. Hardy, Mina Ryten, Michael Weale, Daniah Trabzuni, Adaikalavan Ramasamy, Colin Smith and Robert Walker, affiliated with UCL Institute of Neurology (J.H., M.R., D.T.), King’s College London (M.R., M.W., A.R.) and the University of Edinburgh (C.S., R.W.)
Testing avian, squamate, and mammalian nuclear markers for cross amplification in turtles
Molecular signatures of the rediae, cercariae and adult stages in the complex life cycles of parasitic flatworms (Digenea: Psilostomatidae)
BACKGROUND: Parasitic flatworms (Trematoda: Digenea) represent one of the most remarkable examples of drastic morphological diversity among the stages within a life cycle. Which genes are responsible for extreme differences in anatomy, physiology, behavior, and ecology among the stages? Here we report a comparative transcriptomic analysis of parthenogenetic and amphimictic generations in two evolutionary informative species of Digenea belonging to the family Psilostomatidae. METHODS: In this study the transcriptomes of rediae, cercariae and adult worm stages of Psilotrema simillimum and Sphaeridiotrema pseudoglobulus, were sequenced and analyzed. High-quality transcriptomes were generated, and the reference sets of protein-coding genes were used for differential expression analysis in order to identify stage-specific genes. Comparative analysis of gene sets, their expression dynamics and Gene Ontology enrichment analysis were performed for three life stages within each species and between the two species.RESULTS: Reference transcriptomes for P. simillimum and S. pseudoglobulus include 21,433 and 46,424 sequences, respectively. Among 14,051 orthologous groups (OGs), 1354 are common and specific for two analyzed psilostomatid species, whereas 13 and 43 OGs were unique for P. simillimum and S. pseudoglobulus, respectively. In contrast to P. simillimum, where more than 60% of analyzed genes were active in the redia, cercaria and adult worm stages, in S. pseudoglobulus less than 40% of genes had such a ubiquitous expression pattern. In general, 7805 (36.41%) and 30,622 (65.96%) of genes were preferentially expressed in one of the analyzed stages of P. simillimum and S. pseudoglobulus, respectively. In both species 12 clusters of co-expressed genes were identified, and more than a half of the genes belonging to the reference sets were included into these clusters. Functional specialization of the life cycle stages was clearly supported by Gene Ontology enrichment analysis.CONCLUSIONS: During the life cycles of the two species studied, most of the genes change their expression levels considerably, consequently the molecular signature of a stage is not only a unique set of expressed genes, but also the specific levels of their expression. Our results indicate unexpectedly high level of plasticity in gene regulation between closely related species. Transcriptomes of P. simillimum and S. pseudoglobulus provide high quality reference resource for future evolutionary studies and comparative analyses
Altered Disrupted-in-Schizophrenia-1 function affects the development of cortical parvalbumin interneurons by an indirect mechanism.
<div><p><i>Disrupted-in-Schizophrenia-1 (DISC1)</i> gene has been linked to schizophrenia and related major mental illness. Mouse Disc1 has been implicated in brain development, mainly in the proliferation, differentiation, lamination, neurite outgrowth and synapse formation and maintenance of cortical excitatory neurons. Here, the effects of two loss-of-function point mutations in the mouse <i>Disc1</i> sequence (Q31L and L100P) on cortical inhibitory interneurons were investigated. None of the mutations affected the overall number of interneurons. However, the 100P, but not the 31L, mutation resulted in a significant decrease in the numbers of interneurons expressing parvalbumin mRNA and protein across the sensory cortex. To investigate role of Disc1 in regulation of parvalbumin expression, mouse wild-type Disc-1 or the 100P mutant form were electroporated <i>in utero</i> into cortical excitatory neurons. Overexpression of wild-type Disc1 in these cells caused increased densities of parvalbumin-expressing interneurons in the electroporated area and in areas connected with it, whereas expression of Disc1-100P did not. We conclude that the 100P mutation prevents expression of parvalbumin by a normally sized cohort of interneurons and that altering Disc1 function in cortical excitatory neurons indirectly affects parvalbumin expression by cortical interneurons, perhaps as a result of altered functional input from the excitatory neurons.</p></div
Decline in physical activity during adolescence is not associated with changes in mental health
Recommended from our members
Measurements of atmospheric electricity aloft
Measurements of the electrical characteristics of the atmosphere above the surface have been made for over 200 years, from a variety of different platforms, including kites, balloons, rockets and aircraft. From these measurements, a great deal of information about the electrical characteristics of the atmosphere has been gained, assisting our understanding of the global atmospheric electric circuit, thunderstorm electrification and lightning generation mechanisms, discovery of transient luminous events above thunderstorms, and many other electrical phenomena. This paper surveys the history of atmospheric electrical measurements aloft, from the earliest manned balloon ascents to current day observations with free balloons and aircraft. Measurements of atmospheric electrical parameters in a range of meteorological conditions are described, including clear air conditions, polluted conditions, non-thunderstorm clouds, and thunderstorm clouds, spanning a range of atmospheric conditions, from fair weather, to the most electrically active
- …
