16 research outputs found

    Activated mineral adsorbent for the efficient removal of Pb(II) and Cd(II) from aqueous solution: adsorption performance and mechanism studies

    Full text link
    Abstract Activated mineral adsorbent (AMA) was prepared via double salts (Na2SO4 and CaCO3) heat treatment activation of solid-state potassium feldspar. Adsorption performance of AMA for Cd(II) and Pb(II) was investigated by batch mode and factors affecting adsorption including pH value, initial concentration of adsorbate, contact time, adsorbent dosage and temperature on adsorption performance for Cd(II) and Pb(II) were studied. The results indicated that the adsorption process was pH dependent, endothermic and spontaneous. When the adsorption process of Cd(II) and Pb(II) on AMA reached equilibrium, the maximum saturated adsorption capacities were 263.16 and 303.03 mg/g for Cd(II) and Pb(II) ions, respectively, showing higher adsorption removal efficiency. The Langmuir adsorption isotherm and pseudo second kinetic equation could well fit the adsorption process of Cd(II) and Pb(II) by AMA. Besides, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) techniques were also performed to further reveal the adsorption mechanism. The results indicated that ion exchange, precipitation and adsorption played an important role in adsorption process. From the investigation, it was concluded that AMA was an excellent adsorbent with the advantages of environment-friendly, inexpensive, facile preparation and higher adsorption capacity of toxic Cd(II) and Pb(II) ions.</jats:p

    Effect of enhanced external counterpulsation versus individual shear rate therapy on the peripheral artery functions

    No full text
    Abstract In this study, we aimed to assess the effects of enhanced external counterpulsation (EECP) and individual shear rate therapy (ISRT) on peripheral artery function in patients with lower extremity atherosclerotic disease (LEAD). We randomly assigned 45 LEAD patients to receive 35 sessions of 45 min of EECP (n = 15), ISRT (n = 15), or sham-control (n = 15). Flow-mediated dilation in the brachial artery (brachial-FMD); 6-min walk distance; blood flow in the popliteal, posterior tibial, anterior tibial, and dorsalis pedis arteries; and plasma levels were measured before and after the 7 weeks treatment. 36-item Short Form Health Survey [SF-36] was analyzed before, after 7 weeks, and 3-month follow-ups. EECP treatment significantly improved brachial-FMD and quality of life, increased walking distance, and increased blood flow and the diameters of the popliteal artery and posterior tibial artery (all P < 0.01). Conversely, ISRT markedly increased blood flow in the anterior tibial artery (P < 0.05). EECP and ISRT decreased the endothelin-1 and asymmetrical dimethylarginine levels in patients with LEAD (both P < 0.01). Additionally, sVCAM-1 was significantly reduced after EECP intervention (P = 0.004). Our findings demonstrate that EECP and ISRT have beneficial effects on walking distance, quality of life, flow-mediated dilation, endothelial-derived vasoactive agents, and inflammatory and oxidative stress in LEAD patients. Date of registration: 2021-06-21. Trial registration: ChiCTR2100048086

    Mechanism and effects of artesunate on the liver function of rats with type 1 diabetic periodontitis

    No full text
    Periodontitis is an inflammatory disease of the gums. Periodontitis in patients with diabetes can aggravate insulin resistance, but its molecular and biological mechanism remains unclear. This study aimed to explore the effects of diabetic periodontitis on liver function and determine the mechanism by which artesunate improves liver function. Rats with streptozotocin-induced diabetes were divided into five groups, i.e., normal control group (NC group), diabetic periodontitis group (DM+PD group), artesunate intervention group (ART group), insulin intervention group (INS group), and combined medication intervention group (ART+INS group). Drug interventions were then administered to the rats in each group as follows: 50 mg/kg artesunate to the ART group, 6 U/kg insulin to the INS group, and 50 mg/kg artesunate + 6 U/kg insulin to the ART+INS group. Blood samples, liver tissues, and the maxillary alveolar bone were collected post-sacrifice. ART was found to significantly ameliorate hyperglycemia, blood lipid levels, and liver function. The levels of inflammatory factors reduced; the effect was more pronounced in the ART+INS group. Artesunate presumably inhibits the TLR4/NF-κB signaling pathway and expression of downstream inflammatory factors, thereby exerting a protective effect on diabetes-related liver function. This offers a fresh approach to treat diabetes mellitus.The presentation of the authors' names and (or) special characters in the title of the pdf file of the accepted manuscript may differ slightly from what is displayed on the item page. The information in the pdf file of the accepted manuscript reflects the original submission by the author

    Mechanism and effects of artesunate on the liver function of rats with type 1 diabetic periodontitis

    Full text link
    Periodontitis is an inflammatory disease of the gums. Periodontitis in diabetic patients can aggravate insulin resistance; however, its molecular and biological mechanism remains unclear. This study aimed to explore the effects of diabetic periodontitis on liver function and determine the mechanism by which artesunate improves liver function. Rats with streptozotocin-induced diabetes were divided into five groups: normal control (NC), diabetic periodontitis (DM + PD), artesunate intervention (ART), insulin intervention (INS), and combined medication intervention (ART + INS) groups. Drug interventions were then administered to the rats in each group as follows: 50 mg/kg artesunate to the ART group, 6 U/kg insulin to the INS group, and 50 mg/kg artesunate + 6 U/kg insulin to the ART + INS group. Blood samples, liver tissues, and the maxillary alveolar bone were collected postsacrifice. ART was found to significantly ameliorate hyperglycemia, blood lipid concentrations, and liver function. The levels of inflammatory factors reduced; the effect was more pronounced in the ART + INS group. Artesunate presumably inhibits the TLR4/NF-κB signaling pathway and expression of downstream inflammatory factors, thereby exerting a protective effect on diabetes-related liver function. This offers a fresh approach to treat diabetes mellitus. </jats:p

    Effects of Enhanced External Counterpulsation With Different Sequential Levels on Lower Extremity Hemodynamics

    No full text
    Objective: This study aimed to investigate acute hemodynamics of lower extremities during enhanced external counterpulsation with a three-level sequence at the hips, thighs, and calves (EECP-3), two-level sequence at the hips and thighs (EECP-2), and single leg three-level sequence (EECP-1).Methods: Twenty healthy volunteers were recruited in this study to receive a 45-min EECP intervention. Blood flow spectrums in the anterior tibial artery, posterior tibial artery, and dorsalis pedis artery were imaged by Color Doppler ultrasound. Mean flow rate (FR), area, pulsatility index (PI), peak systolic velocity (PSV), end-diastolic velocity (EDV), mean flow velocity (MV), and systolic maximum acceleration (CCAs) were sequentially measured and calculated at baseline during EECP-3, EECP-1, and EECP-2.Results: During EECP-3, PI, PSV, and MV in the anterior tibial artery were significantly higher, while EDV was markedly lower during EECP-1, EECP-2, and baseline (all P &amp;lt; 0.05). Additionally, ACCs were significantly elevated during EECP-3 compared with baseline. Moreover, FR in the anterior tibial artery was significantly increased during EECP-3 compared with baseline (P = 0.048). During EECP-2, PI and MV in the dorsalis pedis artery were significantly higher and lower than those at baseline, (both P &amp;lt; 0.05). In addition, FR was markedly reduced during EECP-2 compared with baseline (P = 0.028). During EECP-1, the area was significantly lower, while EDV was markedly higher in the posterior tibial artery than during EECP-1, EECP-2, and baseline (all P &amp;lt; 0.05). Meanwhile, FR of the posterior tibial artery was significantly reduced compared with baseline (P = 0.014).Conclusion: Enhanced external counterpulsation with three-level sequence (EECP-3), EECP-2, and EECP-1 induced different hemodynamic responses in the anterior tibial artery, dorsalis pedis artery, and posterior tibial artery, respectively. EECP-3 acutely improved the blood flow, blood flow velocity, and ACCs of the anterior tibial artery. In addition, EECP-1 and EECP-2 significantly increased the blood flow velocity and peripheral resistance of the inferior knee artery, whereas they markedly reduced blood flow in the posterior tibial artery.</jats:p

    Table_4_Effects of Enhanced External Counterpulsation With Different Sequential Levels on Lower Extremity Hemodynamics.DOCX

    No full text
    Objective: This study aimed to investigate acute hemodynamics of lower extremities during enhanced external counterpulsation with a three-level sequence at the hips, thighs, and calves (EECP-3), two-level sequence at the hips and thighs (EECP-2), and single leg three-level sequence (EECP-1).Methods: Twenty healthy volunteers were recruited in this study to receive a 45-min EECP intervention. Blood flow spectrums in the anterior tibial artery, posterior tibial artery, and dorsalis pedis artery were imaged by Color Doppler ultrasound. Mean flow rate (FR), area, pulsatility index (PI), peak systolic velocity (PSV), end-diastolic velocity (EDV), mean flow velocity (MV), and systolic maximum acceleration (CCAs) were sequentially measured and calculated at baseline during EECP-3, EECP-1, and EECP-2.Results: During EECP-3, PI, PSV, and MV in the anterior tibial artery were significantly higher, while EDV was markedly lower during EECP-1, EECP-2, and baseline (all P Conclusion: Enhanced external counterpulsation with three-level sequence (EECP-3), EECP-2, and EECP-1 induced different hemodynamic responses in the anterior tibial artery, dorsalis pedis artery, and posterior tibial artery, respectively. EECP-3 acutely improved the blood flow, blood flow velocity, and ACCs of the anterior tibial artery. In addition, EECP-1 and EECP-2 significantly increased the blood flow velocity and peripheral resistance of the inferior knee artery, whereas they markedly reduced blood flow in the posterior tibial artery.</p

    Table_1_Effects of Enhanced External Counterpulsation With Different Sequential Levels on Lower Extremity Hemodynamics.XLSX

    No full text
    Objective: This study aimed to investigate acute hemodynamics of lower extremities during enhanced external counterpulsation with a three-level sequence at the hips, thighs, and calves (EECP-3), two-level sequence at the hips and thighs (EECP-2), and single leg three-level sequence (EECP-1).Methods: Twenty healthy volunteers were recruited in this study to receive a 45-min EECP intervention. Blood flow spectrums in the anterior tibial artery, posterior tibial artery, and dorsalis pedis artery were imaged by Color Doppler ultrasound. Mean flow rate (FR), area, pulsatility index (PI), peak systolic velocity (PSV), end-diastolic velocity (EDV), mean flow velocity (MV), and systolic maximum acceleration (CCAs) were sequentially measured and calculated at baseline during EECP-3, EECP-1, and EECP-2.Results: During EECP-3, PI, PSV, and MV in the anterior tibial artery were significantly higher, while EDV was markedly lower during EECP-1, EECP-2, and baseline (all P Conclusion: Enhanced external counterpulsation with three-level sequence (EECP-3), EECP-2, and EECP-1 induced different hemodynamic responses in the anterior tibial artery, dorsalis pedis artery, and posterior tibial artery, respectively. EECP-3 acutely improved the blood flow, blood flow velocity, and ACCs of the anterior tibial artery. In addition, EECP-1 and EECP-2 significantly increased the blood flow velocity and peripheral resistance of the inferior knee artery, whereas they markedly reduced blood flow in the posterior tibial artery.</p
    corecore