1,311 research outputs found

    Competing rhombohedral and monoclinic crystal structures in MnPn2Ch4Pn_2Ch_4 compounds: an {\em ab-initio} study

    Full text link
    Based on the relativistic spin-polarized density functional theory calculations we investigate the crystal structure, electronic and magnetic properties of a family MnPn2Ch4 compounds, where pnictogen metal atoms (Pn) are Sb and Bi; chalcogens (Ch) are Se, Te. We show that in the series the compounds of this family with heavier elements prefer to adopt rhombohedral crystal structure composed of weakly bonded septuple monoatomic layers while those with lighter elements tend to be in the monoclinic structure. Irrespective of the crystal structure all compounds of the MnPn2Ch4 series demonstrate a weak energy gain (of a few meV per formula unit or even smaller than meV) for antiferromagnetic (AFM) coupling for magnetic moments on Mn atoms with respect to their ferromagnetic (FM) state. For rhombohedral structures the interlayer AFM coupling is preferable while in monoclinic phases intralayer AFM configuration with ferromagnetic ordering along the Mn chain and antiferromagnetic ordering between the chains has a minimum energy. Over the series the monoclinic compounds are characterized by substantially wider bandgap than compounds with rhombohedral structure

    Statistical analysis of a comprehensive list of visual binaries

    Full text link
    Visual binary stars are the most abundant class of observed binaries. The most comprehensive list of data on visual binaries compiled recently by cross-matching the largest catalogues of visual binaries allowed a statistical investigation of observational parameters of these systems. The dataset was cleaned by correcting uncertainties and misclassifications, and supplemented with available parallax data. The refined dataset is free from technical biases and contains 3676 presumably physical visual pairs of luminosity class V with known angular separations, magnitudes of the components, spectral types, and parallaxes. We also compiled a restricted sample of 998 pairs free from observational biases due to the probability of binary discovery. Certain distributions of observational and physical parameters of stars of our dataset are discussed.Comment: 12 pages, 8 figure

    Surface-state electron dynamics in noble metals

    Full text link
    Theoretical investigations of surface-state electron dynamics in noble metals are reported. The dynamically screened interaction is computed, within many-body theory, by going beyond a free-electron description of the metal surface. Calculations of the inelastic linewidth of Shockley surface-state electrons and holes in these materials are also presented. While the linewidth of excited holes at the surface-state band edge (k=0{\bf k}_\parallel=0) is dominated by a two-dimensional decay channel, within the surface-state band itself, our calculations indicate that major contributions to the electron-electron interaction of surface-state electrons above the Fermi level come from the underlying bulk electrons.Comment: 17 pages, 7 figures, to appear in Prog. Surf. Sc

    Ultrafast electron dynamics in metals

    Get PDF
    During the last decade, significant progress has been achieved in the rapidly growing field of the dynamics of {\it hot} carriers in metals. Here we present an overview of the recent achievements in the theoretical understanding of electron dynamics in metals, and focus on the theoretical description of the inelastic lifetime of excited hot electrons. We outline theoretical formulations of the hot-electron lifetime that is originated in the inelastic scattering of the excited {\it quasiparticle} with occupied states below the Fermi level of the solid. {\it First-principles} many-body calculations are reviewed. Related work and future directions are also addressed.Comment: 17 pages, two columns, 13 figures, to appear in ChemPhysChe

    The role of surface plasmons in the decay of image-potential states on silver surfaces

    Get PDF
    The combined effect of single-particle and collective surface excitations in the decay of image-potential states on Ag surfaces is investigated, and the origin of the long-standing discrepancy between experimental measurements and previous theoretical predictions for the lifetime of these states is elucidated. Although surface-plasmon excitation had been expected to reduce the image-state lifetime, we demonstrate that the subtle combination of the spatial variation of s-d polarization in Ag and the characteristic non-locality of many-electron interactions near the surface yields surprisingly long image-state lifetimes, in agreement with experiment.Comment: 4 pages, 2 figures, to appear in Phys. Rev. Let

    Electron-phonon interaction at the Be(0001) surface

    Full text link
    We present a first principle study of the electron-phonon (e-p) interaction at the Be(0001) surface. The real and imaginary part of the e-p self energy are calculated for the surface state in the binding energy range from the Γˉ\bar{\Gamma} point to the Fermi level. Our calculation shows an overall good agreement with several photoemission data measured at high and low temperatures. Additionally, we show that the energy derivative of real part of the self-energy presents a strong temperature and energy variation close to EFE_{F}, making it difficult to measure its value just at EFE_{F}.Comment: Accepted in Phys. Rev. Lett., 5 figure

    Quantum spin Hall insulators in centrosymmetric thin films composed from topologically trivial BiTeI trilayers

    Full text link
    The quantum spin Hall insulators predicted ten years ago and now experimentally observed are instrumental for a breakthrough in nanoelectronics due to non-dissipative spin-polarized electron transport through their edges. For this transport to persist at normal conditions, the insulators should possess a sufficiently large band gap in a stable topological phase. Here, we theoretically show that quantum spin Hall insulators can be realized in ultra-thin films constructed from a trivial band insulator with strong spin-orbit coupling. The thinnest film with an inverted gap large enough for practical applications is a centrosymmetric sextuple layer built out of two inversely stacked non-centrosymmetric BiTeI trilayers. This nontrivial sextuple layer turns out to be the structure element of an artificially designed strong three-dimensional topological insulator Bi2_2Te2_2I2_2. We reveal general principles of how a topological insulator can be composed from the structure elements of the BiTeX family (X=I, Br, Cl), which opens new perspectives towards engineering of topological phases.Comment: 6 pages, 4 figure
    corecore