40,215 research outputs found

    Electroweak Symmetry Breaking due to Confinement

    Get PDF
    Within the framework of gauge mediated supersymmetry breaking, we consider an electroweak symmetry breaking pattern in which there is no conventional μ\mu term. The pattern is made appealing through realizing it as low energy effective description of a supersymmetric Yang-Mills theory which is of confinement. Phenomenological implications are discussed.Comment: 8 pages, revtex, no figure, the discussion on effective superpotential refine

    Possible pi-phase shift at interface of two pnictides with antiphase s-wave pairing

    Get PDF
    We examine the nature of Josephson junction between two identical Fe-pnictides with anti-phase s-wave pairing. pi-phase shift is found if the junction barrier is thick and the two Fe-pnictides are oriented in certain directions relative to the interface. Our theory provides a possible explanation for the observed half integer flux quantum transitions in a niobium/polycrystal NdFeAsO loop, and attributes the pi-phase shift to intergrain junctions of Fe-pnictides.Comment: 4 pages, 2 figure

    From Entropic Dynamics to Quantum Theory

    Full text link
    Non-relativistic quantum theory is derived from information codified into an appropriate statistical model. The basic assumption is that there is an irreducible uncertainty in the location of particles: positions constitute a configuration space and the corresponding probability distributions constitute a statistical manifold. The dynamics follows from a principle of inference, the method of Maximum Entropy. The concept of time is introduced as a convenient way to keep track of change. A welcome feature is that the entropic dynamics notion of time incorporates a natural distinction between past and future. The statistical manifold is assumed to be a dynamical entity: its curved and evolving geometry determines the evolution of the particles which, in their turn, react back and determine the evolution of the geometry. Imposing that the dynamics conserve energy leads to the Schroedinger equation and to a natural explanation of its linearity, its unitarity, and of the role of complex numbers. The phase of the wave function is explained as a feature of purely statistical origin. There is a quantum analogue to the gravitational equivalence principle.Comment: Extended and corrected version of a paper presented at MaxEnt 2009, the 29th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (July 5-10, 2009, Oxford, Mississippi, USA). In version v3 I corrected a mistake and considerably simplified the argument. The overall conclusions remain unchange

    CampProf: A Visual Performance Analysis Tool for Memory Bound GPU Kernels

    Get PDF
    Current GPU tools and performance models provide some common architectural insights that guide the programmers to write optimal code. We challenge these performance models, by modeling and analyzing a lesser known, but very severe performance pitfall, called 'Partition Camping', in NVIDIA GPUs. Partition Camping is caused by memory accesses that are skewed towards a subset of the available memory partitions, which may degrade the performance of memory-bound CUDA kernels by up to seven-times. No existing tool can detect the partition camping effect in CUDA kernels. We complement the existing tools by developing 'CampProf', a spreadsheet based, visual analysis tool, that detects the degree to which any memory-bound kernel suffers from partition camping. In addition, CampProf also predicts the kernel's performance at all execution configurations, if its performance parameters are known at any one of them. To demonstrate the utility of CampProf, we analyze three different applications using our tool, and demonstrate how it can be used to discover partition camping. We also demonstrate how CampProf can be used to monitor the performance improvements in the kernels, as the partition camping effect is being removed. The performance model that drives CampProf was developed by applying multiple linear regression techniques over a set of specific micro-benchmarks that simulated the partition camping behavior. Our results show that the geometric mean of errors in our prediction model is within 12% of the actual execution times. In summary, CampProf is a new, accurate, and easy-to-use tool that can be used in conjunction with the existing tools to analyze and improve the overall performance of memory-bound CUDA kernels
    corecore