7,479 research outputs found

    Characterizing Nonlocal Correlations via Universal Uncertainty Relations

    Full text link
    Characterization and certification of nonlocal correlations is one of the the central topics in quantum information theory. In this work, we develop the detection methods of entanglement and steering based on the universal uncertainty relations and fine-grained uncertainty relations. In the course of our study, the uncertainty relations are formulated in majorization form, and the uncertainty quantifier can be chosen as any convex Schur concave functions, this leads to a large set of inequalities, including all existing criteria based on entropies. We address the question that if all steerable states (or entangled states) can be witnessed by some uncertainty-based inequality, we find that for pure states and many important families of states, this is the case

    Oracle Based Active Set Algorithm for Scalable Elastic Net Subspace Clustering

    Full text link
    State-of-the-art subspace clustering methods are based on expressing each data point as a linear combination of other data points while regularizing the matrix of coefficients with 1\ell_1, 2\ell_2 or nuclear norms. 1\ell_1 regularization is guaranteed to give a subspace-preserving affinity (i.e., there are no connections between points from different subspaces) under broad theoretical conditions, but the clusters may not be connected. 2\ell_2 and nuclear norm regularization often improve connectivity, but give a subspace-preserving affinity only for independent subspaces. Mixed 1\ell_1, 2\ell_2 and nuclear norm regularizations offer a balance between the subspace-preserving and connectedness properties, but this comes at the cost of increased computational complexity. This paper studies the geometry of the elastic net regularizer (a mixture of the 1\ell_1 and 2\ell_2 norms) and uses it to derive a provably correct and scalable active set method for finding the optimal coefficients. Our geometric analysis also provides a theoretical justification and a geometric interpretation for the balance between the connectedness (due to 2\ell_2 regularization) and subspace-preserving (due to 1\ell_1 regularization) properties for elastic net subspace clustering. Our experiments show that the proposed active set method not only achieves state-of-the-art clustering performance, but also efficiently handles large-scale datasets.Comment: 15 pages, 6 figures, accepted to CVPR 2016 for oral presentatio
    corecore