9,339 research outputs found
Helical damping and anomalous critical non-Hermitian skin effect
Non-Hermitian skin effect and critical skin effect are unique features of
non-Hermitian systems. In this Letter, we study an open system with its
dynamics of single-particle correlation function effectively dominated by a
non-Hermitian damping matrix, which exhibits skin effect, and
uncover the existence of a novel phenomenon of helical damping. When adding
perturbations that break anomalous time reversal symmetry to the system, the
critical skin effect occurs, which causes the disappearance of the helical
damping in the thermodynamic limit although it can exist in small size systems.
We also demonstrate the existence of anomalous critical skin effect when we
couple two identical systems with skin effect. With the help of
non-Bloch band theory, we unveil that the change of generalized Brillouin zone
equation is the necessary condition of critical skin effect.Comment: 7+5 pages, 4+5 figure
Triple condensate halo from water droplets impacting on cold surfaces
Understanding the dynamics in the deposition of water droplets onto solid
surfaces is of importance from both fundamental and practical viewpoints. While
the deposition of a water droplet onto a heated surface is extensively studied,
the characteristics of depositing a droplet onto a cold surface and the
phenomena leading to such behavior remain elusive. Here we report the formation
of a triple condensate halo observed during the deposition of a water droplet
onto a cold surface, due to the interplay between droplet impact dynamics and
vapor diffusion. Two subsequent condensation stages occur during the droplet
spreading and cooling processes, engendering this unique condensate halo with
three distinctive bands. We further proposed a scaling model to interpret the
size of each band, and the model is validated by the experiments of droplets
with different impact velocity and varying substrate temperature. Our
experimental and theoretical investigation of the droplet impact dynamics and
the associated condensation unravels the mass and heat transfer among droplet,
vapor and substrate, offer a new sight for designing of heat exchange devices
Noise suppression of on-chip mechanical resonators by chaotic coherent feedback
We propose a method to decouple the nanomechanical resonator in
optomechanical systems from the environmental noise by introducing a chaotic
coherent feedback loop. We find that the chaotic controller in the feedback
loop can modulate the dynamics of the controlled optomechanical system and
induce a broadband response of the mechanical mode. This broadband response of
the mechanical mode will cut off the coupling between the mechanical mode and
the environment and thus suppress the environmental noise of the mechanical
modes. As an application, we use the protected optomechanical system to act as
a quantum memory. It's shown that the noise-decoupled optomechanical quantum
memory is efficient for storing information transferred from coherent or
squeezed light
Gap Anisotropy in Iron-Based Superconductors: A Point-Contact Andreev Reflection Study of BaFeNiAs Single Crystals
We report a systematic investigation on c-axis point-contact Andreev
reflection (PCAR) in BaFeNiAs superconducting single crystals
from underdoped to overdoped regions (0.075 ). At optimal
doping () the PCAR spectrum feature the structures of two
superconducting gap and electron-boson coupling mode. In the scenario,
quantitative analysis using a generalized Blonder-Tinkham-Klapwijk (BTK)
formalism with two gaps: one isotropic and another angle dependent, suggest a
nodeless state in strong-coupling limit with gap minima on the Fermi surfaces.
Upon crossing above the optimal doping (), the PCAR spectrum show an
in-gap sharp narrow peak at low bias, in contrast to the case of underdoped
samples (), signaling the onset of deepened gap minima or nodes in the
superconducting gap. This result provides evidence of the modulation of the gap
amplitude with doping concentration, consistent with the calculations for the
orbital dependent pair interaction mediated by the antiferromagnetic spin
fluctuations.Comment: 5 pages, 4 figure
Observation of Majorana fermions with spin selective Andreev reflection in the vortex of topological superconductor
Majorana fermion (MF) whose antiparticle is itself has been predicted in
condensed matter systems. Signatures of the MFs have been reported as zero
energy modes in various systems. More definitive evidences are highly desired
to verify the existence of the MF. Very recently, theory has predicted MFs to
induce spin selective Andreev reflection (SSAR), a novel magnetic property
which can be used to detect the MFs. Here we report the first observation of
the SSAR from MFs inside vortices in Bi2Te3/NbSe2 hetero-structure, in which
topological superconductivity was previously established. By using
spin-polarized scanning tunneling microscopy/spectroscopy (STM/STS), we show
that the zero-bias peak of the tunneling differential conductance at the vortex
center is substantially higher when the tip polarization and the external
magnetic field are parallel than anti-parallel to each other. Such strong spin
dependence of the tunneling is absent away from the vortex center, or in a
conventional superconductor. The observed spin dependent tunneling effect is a
direct evidence for the SSAR from MFs, fully consistent with theoretical
analyses. Our work provides definitive evidences of MFs and will stimulate the
MFs research on their novel physical properties, hence a step towards their
statistics and application in quantum computing.Comment: 4 figures 15 page
A predator-prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria
Predator-prey interactions play important roles in the cycling of marine organic matter. Here we show that a Gram-negative bacterium isolated from marine sediments (Pseudoalteromonas sp. strain CF6-2) can kill Gram-positive bacteria of diverse peptidoglycan (PG) chemotypes by secreting the metalloprotease pseudoalterin. Secretion of the enzyme requires a Type II secretion system. Pseudoalterin binds to the glycan strands of Gram positive bacterial PG and degrades the PG peptide chains, leading to cell death. The released nutrients, including PG-derived D-amino acids, can then be utilized by strain CF6-2 for growth. Pseudoalterin synthesis is induced by PG degradation products such as glycine and glycine-rich oligopeptides. Genes encoding putative pseudoalterin-like proteins are found in many other marine bacteria. This study reveals a new microbial interaction in the ocean
- …
