5,286 research outputs found

    Electronic band gaps and transport in aperiodic graphene superlattices of Thue-Morse sequence

    Full text link
    We have studied the electronic properties in aperiodic graphene superlattices of Thue-Morse sequence. Although the structure is aperiodic, an unusual Dirac point (DP) does exist and its location is exactly at the position of the zero-averaged wave number (zero-kˉ)\bar{k}). Furthermore, the zero-kˉ\bar{k} gap associated with the DP is robust against the lattice constants and the incident angles, and multi-DPs can appear under the suitable conditions. A resultant controllability of electron transport in Thue-Morse sequence is predicted, which may facilitate the development of many graphene-based electronics.Comment: Accepted for publication in Applied Physics Letters; 4 pagese, 5 figure

    MOON: MapReduce On Opportunistic eNvironments

    Get PDF
    Abstract—MapReduce offers a flexible programming model for processing and generating large data sets on dedicated resources, where only a small fraction of such resources are every unavailable at any given time. In contrast, when MapReduce is run on volunteer computing systems, which opportunistically harness idle desktop computers via frameworks like Condor, it results in poor performance due to the volatility of the resources, in particular, the high rate of node unavailability. Specifically, the data and task replication scheme adopted by existing MapReduce implementations is woefully inadequate for resources with high unavailability. To address this, we propose MOON, short for MapReduce On Opportunistic eNvironments. MOON extends Hadoop, an open-source implementation of MapReduce, with adaptive task and data scheduling algorithms in order to offer reliable MapReduce services on a hybrid resource architecture, where volunteer computing systems are supplemented by a small set of dedicated nodes. The adaptive task and data scheduling algorithms in MOON distinguish between (1) different types of MapReduce data and (2) different types of node outages in order to strategically place tasks and data on both volatile and dedicated nodes. Our tests demonstrate that MOON can deliver a 3-fold performance improvement to Hadoop in volatile, volunteer computing environments

    Gravitational wave source localization for eccentric binary coalesce with a ground-based detector network

    Full text link
    Gravitational wave source localization problem is important in gravitational wave astronomy. Regarding ground-based detector, almost all of the previous investigations only considered the difference of arrival time among the detector network for source localization. Within the matched filtering framework, the information beside the arrival time difference can possibly also do some help on source localization. Especially when an eccentric binary is considered, the character involved in the gravitational waveform may improve the source localization. We investigate this effect systematically in the current paper. During the investigation, the enhanced post-circular (EPC) waveform model is used to describe the eccentric binary coalesce. We find that the source localization accuracy does increase along with the eccentricity increases. But such improvement depends on the total mass of the binary. For total mass 100M{}_\odot binary, the source localization accuracy may be improved about 2 times in general when the eccentricity increases from 0 to 0.4. For total mass 65M{}_\odot binary (GW150914-like binary), the improvement factor is about 1.3 when the eccentricity increases from 0 to 0.4. For total mass 22M{}_\odot binary (GW151226-like binary), such improvement is ignorable.Comment: Add missing reference

    Effect of source tampering in the security of quantum cryptography

    Get PDF
    The security of source has become an increasingly important issue in quantum cryptography. Based on the framework of measurement-device-independent quantum-key-distribution (MDI-QKD), the source becomes the only region exploitable by a potential eavesdropper (Eve). Phase randomization is a cornerstone assumption in most discrete-variable (DV-) quantum communication protocols (e.g., QKD, quantum coin tossing, weak coherent state blind quantum computing, and so on), and the violation of such an assumption is thus fatal to the security of those protocols. In this paper, we show a simple quantum hacking strategy, with commercial and homemade pulsed lasers, by Eve that allows her to actively tamper with the source and violate such an assumption, without leaving a trace afterwards. Furthermore, our attack may also be valid for continuous-variable (CV-) QKD, which is another main class of QKD protocol, since, excepting the phase random assumption, other parameters (e.g., intensity) could also be changed, which directly determine the security of CV-QKD.Comment: 9 pages, 6 figure

    Progressive amorphization of GeSbTe phase-change material under electron beam irradiation

    Full text link
    Fast and reversible phase transitions in chalcogenide phase-change materials (PCMs), in particular, Ge-Sb-Te compounds, are not only of fundamental interests, but also make PCMs based random access memory (PRAM) a leading candidate for non-volatile memory and neuromorphic computing devices. To RESET the memory cell, crystalline Ge-Sb-Te has to undergo phase transitions firstly to a liquid state and then to an amorphous state, corresponding to an abrupt change in electrical resistance. In this work, we demonstrate a progressive amorphization process in GeSb2Te4 thin films under electron beam irradiation on transmission electron microscope (TEM). Melting is shown to be completely absent by the in situ TEM experiments. The progressive amorphization process resembles closely the cumulative crystallization process that accompanies a continuous change in electrical resistance. Our work suggests that if displacement forces can be implemented properly, it should be possible to emulate symmetric neuronal dynamics by using PCMs
    corecore