10,081 research outputs found
The Necessary And Sufficient Condition for Generalized Demixing
Demixing is the problem of identifying multiple structured signals from a
superimposed observation. This work analyzes a general framework, based on
convex optimization, for solving demixing problems. We present a new solution
to determine whether or not a specific convex optimization problem built for
generalized demixing is successful. This solution will also bring about the
possibility to estimate the probability of success by the approximate kinematic
formula
Progressive amorphization of GeSbTe phase-change material under electron beam irradiation
Fast and reversible phase transitions in chalcogenide phase-change materials
(PCMs), in particular, Ge-Sb-Te compounds, are not only of fundamental
interests, but also make PCMs based random access memory (PRAM) a leading
candidate for non-volatile memory and neuromorphic computing devices. To RESET
the memory cell, crystalline Ge-Sb-Te has to undergo phase transitions firstly
to a liquid state and then to an amorphous state, corresponding to an abrupt
change in electrical resistance. In this work, we demonstrate a progressive
amorphization process in GeSb2Te4 thin films under electron beam irradiation on
transmission electron microscope (TEM). Melting is shown to be completely
absent by the in situ TEM experiments. The progressive amorphization process
resembles closely the cumulative crystallization process that accompanies a
continuous change in electrical resistance. Our work suggests that if
displacement forces can be implemented properly, it should be possible to
emulate symmetric neuronal dynamics by using PCMs
Lasing on nonlinear localized waves in curved geometry
The use of geometrical constraints opens many new perspectives in photonics
and in fundamental studies of nonlinear waves. By implementing surface
structures in vertical cavity surface emitting lasers as manifolds for curved
space, we experimentally study the impacts of geometrical constraints on
nonlinear wave localization. We observe localized waves pinned to the maximal
curvature in an elliptical-ring, and confirm the reduction in the localization
length of waves by measuring near and far field patterns, as well as the
corresponding dispersion relation. Theoretically, analyses based on a
dissipative model with a parabola curve give good agreement remarkably to
experimental measurement on the transition from delocalized to localized waves.
The introduction of curved geometry allows to control and design lasing modes
in the nonlinear regime.Comment: 6 pages, 6 figure
The effect of subgroup homogeneity of efficacy on contribution in public good dilemmas
open access articleThis paper examines how to maximize contribution in public good dilemmas by arranging people into homogeneous or heterogeneous subgroups. Past studies on the effect of homo- geneity of efficacy have exclusively manipulated group composition in their experimental designs, which might have imposed a limit on ecological validity because group membership may not be easily changed in reality. In this study, we maintained the same group composi- tion but varied the subgroup composition. We developed a public good dilemmas paradigm in which participants were assigned to one of the four conditions (high- vs. low-efficacy; homogeneous vs. heterogeneous subgroup) to produce their endowments and then to decide how much to contribute. We found that individuals in homogeneous and heteroge- neous subgroups produced a similar amount and proportion of contribution, which was due to the two mediating effects that counteracted each other, namely (a) perceived efficacy rel- ative to subgroup and (b) expectation of contribution of other subgroup members. This paper demonstrates both the pros and cons of arranging people into homogeneous and het- erogeneous subgroups of efficacy
An Evolutionary Algorithm to Mine High-Utility Itemsets
High-utility itemset mining (HUIM) is a critical issue in recent years since it can be used to reveal the profitable products by considering both the quantity and profit factors instead of frequent itemset mining (FIM) of association rules (ARs). In this paper, an evolutionary algorithm is presented to efficiently mine high-utility itemsets (HUIs) based on the binary particle swarm optimization. A maximal pattern (MP)-tree strcutrue is further designed to solve the combinational problem in the evolution process. Substantial experiments on real-life datasets show that the proposed binary PSO-based algorithm has better results compared to the state-of-the-art GA-based algorith
- …
