25,500 research outputs found

    Parylene stiction

    Get PDF
    This paper presents a preliminary study into stiction between parylene C and substrate surfaces for biocompatible check-valve applications. During fabrication, parylene C is used as the structural material for the check-valve. The substrate surfaces studied include Au, Al, Si, parylene C, XeF_2 treated Si, and silicon dioxide. Stiction between different surfaces is created after sacrificial photoresist etching. Then, the stiction is measured using blister tests, and stiction mechanisms for different materials are investigated. The devices are released with different recipes to examine their effects. Finally, the results of the study reveal methods to control the cracking pressure of parylene check-valves

    Cracking pressure control of parylene checkvalve using slanted tensile tethers

    Get PDF
    MEMS check valves with fixed cracking pressures are important in micro-fluidic applications where the pressure, flow directions and flow rates all need to be carefully controlled. This work presents a new surface-micromachined parylene check valve that uses residual thermal stress in the parylene to control its cracking pressure. The new check valve uses slanted tethers to allow the parylene tensile stress to apply a net downward force on the valving seat against the orifice. The angle of the slanted tethers is made using a gray-scale mask to create a sloped sacrificial photoresist with the following tether parylene deposition. The resulted check valves have both the cracking pressures and flow profiles agreeable well with our theoretical analysis

    Association between Temperature and Emergency Room Visits for Cardiorespiratory Diseases, Metabolic Syndrome-Related Diseases, and Accidents in Metropolitan Taipei

    Get PDF
    Objective: This study evaluated risks of the emergency room visits (ERV) for cerebrovascular diseases, heart diseases, ischemic heart disease, hypertensive diseases, chronic renal failure (CRF), diabetes mellitus (DM), asthma, chronic airway obstruction not elsewhere classified (CAO), and accidents associated with the ambient temperature from 2000 to 2009 in metropolitan Taipei. Methods: The distributed lag non-linear model was used to estimate the cumulative relative risk (RR) and confidence interval (CI) of cause-specific ERV associated with daily temperature from lag 0 to lag 3 after controlling for potential confounders. Results: This study identified that temperatures related to the lowest risk of ERV was 26 °C for cerebrovascular diseases, 18 °C for CRF, DM, and accidents, and 30 °C for hypertensive diseases, asthma, and CAO. These temperatures were used as the reference temperatures to measure RR for the corresponding diseases. A low temperature (14°C) increased the ERV risk for cerebrovascular diseases, hypertensive diseases, and asthma, with respective cumulative 4-day RRs of 1.56 (95% CI: 1.23, 1.97), 1.78 (95% CI: 1.37, 2.34), and 2.93 (95% CI: 1.26, 6.79). The effects were greater on, or after, lag one. At 32°C, the cumulative 4-day RR for ERV was significant for CRF (RR = 2.36; 95% CI: 1.33, 4.19) and accidents (RR = 1.23; 95% CI: 1.14, 1.33) and the highest RR was seen on lag 0 for CRF (RR = 1.69; 95% CI: 1.01, 3.58), DM (RR = 1.69; 95% CI: 1.09, 2.61), and accidents (RR = 1.19; 95% CI: 1.11, 1.27). Conclusions: Higher temperatures are associated with the increased ERV risks for CRF, DM, and accidents and lower temperatures with the increased ERV risks for cerebrovascular diseases, hypertensive diseases, and asthma in the subtropical metropolitan

    Tracing and Predicting Collaboration for Junior Scholars

    Get PDF
    Academic publication is a key indicator for measuring scholars' scientific productivity and has a crucial impact on their future career. Previous work has identified the positive association between the number of collaborators and academic productivity, which motivates the problem of tracing and predicting potential collaborators for junior scholars. Nevertheless, the insufficient publication record makes current approaches less effective for junior scholars. In this paper, we present an exploratory study of predicting junior scholars' future co-authorship in three different network density. By combining features based on affiliation, geographic and content information, the proposed model significantly outperforms the baseline methods by 12% in terms of sensitivity. Furthermore, the experiment result shows the association between network density and feature selection strategy. Our study sheds light on the re-evaluation of existing approaches to connect scholars in the emerging worldwide Web of Scholars
    corecore