24,288 research outputs found
Electron-cyclotron maser and solar microwave millisecond spike emission
An intense solar microwave millisecond spike emission (SMMSE) event was observed on May 16, 1981 by Zhao and Jin at Beijing Observatory. The peak flux density of the spikes is high to 5 x 100,000 s.f.u. and the corresponding brightness temperature (BT) reaches approx. 10 to the 15th K. In order to explain the observed properties of SMMSE, it is proposed that a beam of electrons with energy of tens KeV injected from the acceleration region downwards into an emerging magnetic arch forms so-called hollow beam distribution and causes electron-cyclotron maser (ECM) instability. The growth rate of second harmonic X-mode is calculated and its change with time is deduced. It is shown that the saturation time of ECM is t sub s approx. equals 0.42 ms and only at last short stage (delta t less than 0.2 t sub s) the growth rate decreases to zero rather rapidly. So a SMMSE with very high BT will be produced if the ratio of number density of nonthermal electrons to that of background electrons, n sub s/n sub e, is larger than 4 x .00001
Effects of loss on the phase sensitivity with parity detection in an SU(1,1) interferometer
We theoretically study the effects of loss on the phase sensitivity of an
SU(1,1) interferometer with parity detection with various input states. We show
that although the sensitivity of phase estimation decreases in the presence of
loss, it can still beat the shot-noise limit with small loss. To examine the
performance of parity detection, the comparison is performed among homodyne
detection, intensity detection, and parity detection. Compared with homodyne
detection and intensity detection, parity detection has a slight better optimal
phase sensitivity in the absence of loss, but has a worse optimal phase
sensitivity with a significant amount of loss with one-coherent state or
coherent squeezed state input.Comment: 13 pages, 8 figure
Isobaric Yield Ratio Difference in Heavy-ion Collisions, and Comparison to Isoscaling
An isobaric yield ratio difference (IBD) method is proposed to study the
ratio of the difference between the chemical potential of neutron and proton to
temperature () in heavy-ion collisions. The
determined by the IBD method (IB-) is compared to the results of
the isoscaling method (IS-), which uses the isotopic or the
isotonic yield ratio. Similar distributions of the IB- and IS- are
found in the measured 140 MeV Ca + Be and the Ni +
Be reactions. The IB- and IS- both have a distribution with
a plateau in the small mass fragments plus an increasing part in the fragments
of relatively larger mass. The IB- and IS- plateaus show
dependence on the ratio of the projectile. It is suggested that the
height of the plateau is decided by the difference between the neutron density
() and the proton density () distributions of the projectiles,
and the width shows the overlapping volume of the projectiles in which
and change very little. The difference between the IB- and
IS- is explained by the isoscaling parameters being constrained by
the many isotopes and isotones, while the IBD method only uses the yields of
two isobars. It is suggested that the IB- is more reasonable than
the IS-, especially when the isotopic or isotonic ratio disobeys
the isoscaling. As to the question whether the depends on the
density or the temperature, the density dependence is preferred since the low
density can result in low temperature in the peripheral reactions.Comment: 6 pages, 6 figures, mistake of reference correcte
- …
