6,589 research outputs found

    Neutron Density Distributions of Neutron-Rich Nuclei Studied with the Isobaric Yield Ratio Difference

    Full text link
    The isobaric yield ratio difference (IBD) between two reactions of similar experimental setups is found to be sensitive to nuclear density differences between projectiles. In this article, the IBD probe is used to study the density variation in neutron-rich 48^{48}Ca. By adjusting diffuseness in the neutron density distribution, three different neutron density distributions of 48^{48}Ca are obtained. The yields of fragments in the 80AA MeV 40,48^{40, 48}Ca + 12^{12}C reactions are calculated by using a modified statistical abrasion-ablation model. It is found that the IBD results obtained from the prefragments are sensitive to the density distribution of the projectile, while the IBD results from the final fragments are less sensitive to the density distribution of the projectile.Comment: 3 figure

    Gravitational wave source localization for eccentric binary coalesce with a ground-based detector network

    Full text link
    Gravitational wave source localization problem is important in gravitational wave astronomy. Regarding ground-based detector, almost all of the previous investigations only considered the difference of arrival time among the detector network for source localization. Within the matched filtering framework, the information beside the arrival time difference can possibly also do some help on source localization. Especially when an eccentric binary is considered, the character involved in the gravitational waveform may improve the source localization. We investigate this effect systematically in the current paper. During the investigation, the enhanced post-circular (EPC) waveform model is used to describe the eccentric binary coalesce. We find that the source localization accuracy does increase along with the eccentricity increases. But such improvement depends on the total mass of the binary. For total mass 100M{}_\odot binary, the source localization accuracy may be improved about 2 times in general when the eccentricity increases from 0 to 0.4. For total mass 65M{}_\odot binary (GW150914-like binary), the improvement factor is about 1.3 when the eccentricity increases from 0 to 0.4. For total mass 22M{}_\odot binary (GW151226-like binary), such improvement is ignorable.Comment: Add missing reference
    corecore