2,798 research outputs found
StoryDroid: Automated Generation of Storyboard for Android Apps
Mobile apps are now ubiquitous. Before developing a new app, the development
team usually endeavors painstaking efforts to review many existing apps with
similar purposes. The review process is crucial in the sense that it reduces
market risks and provides inspiration for app development. However, manual
exploration of hundreds of existing apps by different roles (e.g., product
manager, UI/UX designer, developer) in a development team can be ineffective.
For example, it is difficult to completely explore all the functionalities of
the app in a short period of time. Inspired by the conception of storyboard in
movie production, we propose a system, StoryDroid, to automatically generate
the storyboard for Android apps, and assist different roles to review apps
efficiently. Specifically, StoryDroid extracts the activity transition graph
and leverages static analysis techniques to render UI pages to visualize the
storyboard with the rendered pages. The mapping relations between UI pages and
the corresponding implementation code (e.g., layout code, activity code, and
method hierarchy) are also provided to users. Our comprehensive experiments
unveil that StoryDroid is effective and indeed useful to assist app
development. The outputs of StoryDroid enable several potential applications,
such as the recommendation of UI design and layout code
A branch current reallocation based energy balancing strategy for the modular multilevel matrix converter operating around equal frequency
The Modular multilevel matrix converter (M3C) is a promising topology for medium-voltage, high-power applications. Due to the modular structure, it is scalable, produces high quality output waveforms and can be fault tolerant. However, the M3C suffers from capacitor-voltage fluctuation if the output frequency is similar to the input frequency. This problem could limit the circuit’s application in the adjustable speed drives (ASD). This paper introduces a theoretical analysis in the phasor-domain to find the branch energy equilibrium point of the M3C when operating with equal input and output frequencies. On the basis of this equilibrium point, a branch current reallocation based energy balancing control method is proposed to equalize the energy stored in the nine converter branches. With this novel control method, the M3C can effectively overcome the capacitor voltage fluctuation without using balancing techniques based on common mode voltage or applying reactive power at the input side
An optimal full frequency control strategy for the modular multilevel matrix converter based on predictive control
The modular multilevel matrix converter (M3C) is a promising topology for high-voltage high-power applications. Recent researches have proved its significant advantages for adjustable-speed motor drives compared with the back-to-back modular multilevel converter (MMC). However, the branch energy balancing in the M3C presents great challenge especially at critical-frequency points where the output frequency is close to zero or grid-side frequency. Generally, this balancing control depends on the appropriate injection of inner circulating currents and the common-mode voltage (CMV) whereas their values are hard to determine and optimize. In this paper, an optimization based predictive control method is proposed to calculate the required circulating currents and the CMV. The proposed method features a broad-frequency range balancing of capacitor-voltages and no reactive power in the grid side. For operation at critical-frequency points, there is no increase on branch voltage stresses and limited increase on branch current stresses. A downscaled M3C system with 27 cells is designed and experiment results with the R-L load and induction motor load are presented to verify the proposed control method
Structural and biochemical insights into small RNA 3' end trimming by Arabidopsis SDN1.
A family of DEDDh 3'→5' exonucleases known as Small RNA Degrading Nucleases (SDNs) initiates the turnover of ARGONAUTE1 (AGO1)-bound microRNAs in Arabidopsis by trimming their 3' ends. Here, we report the crystal structure of Arabidopsis SDN1 (residues 2-300) in complex with a 9 nucleotide single-stranded RNA substrate, revealing that the DEDDh domain forms rigid interactions with the N-terminal domain and binds 4 nucleotides from the 3' end of the RNA via its catalytic pocket. Structural and biochemical results suggest that the SDN1 C-terminal domain adopts an RNA Recognition Motif (RRM) fold and is critical for substrate binding and enzymatic processivity of SDN1. In addition, SDN1 interacts with the AGO1 PAZ domain in an RNA-independent manner in vitro, enabling it to act on AGO1-bound microRNAs. These extensive structural and biochemical studies may shed light on a common 3' end trimming mechanism for 3'→5' exonucleases in the metabolism of small non-coding RNAs
- …
